首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heptapeptide (YANAVQV-NH2 = T-) and octapeptide (YANAVQTV-NH2 = T+), the putative C-terminus of crustacean hyperglycemic hormone (CHH) from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergii, was synthesized by solid phase peptide synthesis and conjugated to bovine serum albumin, then used for immunization in swiss mice. Specificity of the antisera against both peptides was determined by indirect immunoperoxidase ELISA. The best response of antiserum against each peptide was used to determine the presence of the natural CHH in the eyestalk extract after separation by one step of RP-HPLC using dot-ELISA. The peptide immunoreactive substances were found in fraction 30 using anti-T- antiserum and in fraction 38 using anti-T+ antiserum. However, the CHH activity was found only in fractions 37-39. Immunocytochemical localization of peptide immunoreactive substances in the eyestalk of M. rosenbergii using the anti-T- antiserum did not show any specific staining. In contrast, the anti-T+ antiserum revealed specific staining on a group of 24 +/- 5 neurons in medulla terminalis ganglionic x-organ and their processes through the sinus gland. Similar results were also obtained using the eyestalk of another species, the giant tiger prawn Penaeus monodon, in which 34 +/- 4 neuronal cells were recognized. These results strongly indicate that the anti-T+ antibody can bind to the natural CHH while the anti-T- antibody can not; therefore, this isoform of CHH in M. rosenbergii should consist of 72 residues and threonine is predicted to be present at position 71.  相似文献   

2.
Crustacean hyperglycemic hormone (CHH), a physiologically important neurohormone stored in the sinus gland of eyestalks, primarily regulates carbohydrate metabolism and also plays significant roles in reproduction, molting and other physiological processes. In the freshwater giant prawn, Macrobrachium rosenbergii, an injection of X-organ sinus gland (XOSG) extract evoked a hyperglycemic response, peaked in 1 h. The hyperglycemic effect of the eyestalk extract was maximal at the dose of 0.5 eyestalk equivalent. CHH fractionated by RP-HPLC, in M. rosenbergii was identified by its hyperglycemic activity and partial amino acid sequence, and the molecular weight of 8534 was determined by matrix-assisted laser desorption ionization mass spectrometry--time of flight analysis (MALDI-TOF). The amino acid sequence of the first 25 residues of CHH showed 72% homology with the first 25 residues of CHH A and CHH B of the American lobster Homarus americanus.  相似文献   

3.
Crustacean hyperglycemic hormone (CHH) is released from the X-organ/sinus gland complex located in the eyestalks, and regulates glucose levels in the hemolymph. In the giant freshwater prawn (Macrobrachium rosenbergii), two cDNAs encoding different CHH molecules were previously cloned by other workers. One of these (Mar-CHH-2) was expressed only in the eyestalks, whereas the other (Mar-CHH-L) was expressed in the heart, gills, antennal gland, and thoracic ganglion, but not in the eyestalks. However, their biological activities had not yet been characterized. Therefore, in this study, recombinant Mar-CHH-2 (rMar-CHH-2) and Mar-CHH-L (rMar-CHH-L) were produced using an E. coli expression system, by expression in bacterial cells and recovery in the insoluble fraction. Thereafter, rMar-CHH-2 and rMar-CHH-L were subjected to refolding and were subsequently purified by reversed-phase HPLC. The rMar-CHH-2 and rMar-CHH-L thus obtained exhibited the same disulfide bond arrangements as those of other CHHs reported previously, indicative of natural conformation. In in vivo bioassay, rMar-CHH-2 showed significant hyperglycemic activity, whereas rMar-CHH-L had no effect. These results indicate that Mar-CHH-L does not function as a CHH, but may have some other, unknown function.  相似文献   

4.
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level.  相似文献   

5.
In addition to five FMRFamide-like peptides (FLPs) previously isolated from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergii (16), three more new FLPs (Mar-FLP6-8) were identified from minor immunoreactive fractions of 5,000 eyestalk extracted in methanol/acetic acid/water: DGGRNFLRFamide, GYGDRNFLRFamide and VSHNNFLRFamide. These three peptides share 5-6 common residues at the C-terminus with Mar-FLP1,2 and 3. This evidence reveals that the structural diversity and complexity of the FLP family in M. rosenbergii are similar to that found in other invertebrate species.  相似文献   

6.
This study deals with the localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of larvae and postlarvae ofHomarus gammarus, by immunocytochemistry and in situ hybridization. The CHH and GIH neuropeptides are located in the perikarya of neuroendocrine cells belonging to the X-organ of the medulla terminalis, in their tract joining the sinus gland, and in the neurohemal organ itself, at larval stages I, II and III and at the first postlarval stage (stage IV). In all the investigated stages, the mRNA encoding the aforementioned neuropeptides could only be detected in the perikarya of these neuroendocrine cells. In stage I, approximately 19 CHH-immunopositive and 20 GIH-immunopositive cells are present, both with a mean diameter of 7±1 μm. GIH cells are preferably localized at the periphery of the X-organ surrounding the CHH cells that are centrally situated. Colocalization of CHH and GIH immunoreactions can be observed in some cells. The cell system producing CHH and GIH in the larval and postlarval eyestalk is thus functional and is morphologically comparable to the corresponding neuroendocrine center in the adult lobster.  相似文献   

7.
The crustacean hyperglycemic hormone (CHH) plays an important role in the regulation of hemolymph glucose levels, but it is also involved in other functions such as growth, molting and reproduction. In the present study we describe the first CHH family gene isolated from the Atlantic Ocean shrimp Litopenaeus schmitti. Sequence analysis of the amplified cDNA fragment revealed a high nucleotide sequence identity with other CHHs. Northern blot analysis showed that the isolated CHH mRNA from L. schmitti is present in the eyestalk but not in muscle or stomach. We also investigated the ability of dsRNA to inhibit the CHH function in shrimps in vivo. Injection of CHH dsRNA into the abdominal hemolymph sinuses resulted in undetectable CHH mRNA levels within 24 h and a corresponding decrease in hemolymph glucose levels, suggesting that functional gene silencing had occurred. These findings are the first evidence that dsRNA technique is operative in adult shrimps in vivo.  相似文献   

8.
9.
The crustacean hyperglycemic hormone (CHH) is synthesized as part of a larger preprohormone in which the sequence of CHH is N-terminally flanked by a peptide for which the name CPRP (CHH precursor-related peptide) is proposed. Both CHH and CPRP are present in the sinus gland, the neurohemal organ of neurosecretory cells located in the eyestalk of decapod crustaceans. This paper describes the isolation and sequence analysis of CPRPs isolated from sinus glands of the crab Carcinus maenas, the crayfish Orconectes limosus and the lobster Homarus americanus. The published sequence of "peptide H" isolated from the land crab, Cardisoma carnifex, has now been recognized as a CPRP in this species. Sequence comparison reveals a high level of identity for the N-terminal region (residues 1-13) between all four peptides, while identity in the C-terminal domain is high between lobster and crayfish CPRP on the one hand, and between both crab species on the other. Conserved N-terminal residues include a putative monobasic processing site at position 11, which suggests that CPRP may be a biosynthetic intermediate from which a potentially bioactive decapeptide can be derived.  相似文献   

10.

Background  

Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated.  相似文献   

11.
The structures of crustacean hyperglycemic hormones (CHH) were investigated in two crabs, the coastal euryhaline crab Pachygrapsus marmoratus and the fresh water crab Potamon ibericum. The neuropeptide mRNAs were extracted from pericardial and X-organs (PO and XO), and the sequences of the cDNA encoding the hormones' precursors were determined. The X-organ preprohormones are composed of 29 and 28 amino acid signal peptides in P. marmoratus and P. ibericum respectively, followed by 43 and 41 amino acid crustacean hyperglycemic hormone precursor related peptide (CPRP) flanking the 72 amino acid crustacean hyperglycemic hormones. A similar organization is reported for pericardial preprohormones with identical sequences for the signal peptide, the CPRP and the N-terminal sequences of CHH (1-40), but remaining sequences (41-72 and 41-71) differing considerably. In P. marmoratus two CHH cDNAs were characterized from XO and evidences were obtained for the existence of at least two forms in the PO. From our results and by comparison with other known sequences, a consensus pattern for crab pericardial CHH could be pointed out. Analysis of the data presented in this article using phylogenetic methods reveals that the two crab species studied are much closer than previously predicted.  相似文献   

12.
13.
14.
15.
The structure of a well-known neurohormone involved in homeostasis regulation and stress response, the crustacean hyperglycemic hormone, was investigated in the deep-sea hydrothermal vent crab Bythograea thermydron. The neuropeptide was isolated from neurohemal organs (sinus glands) and its biological activity checked using an homologous bioassay. Partial amino acid sequence was established by a combination of Edman chemistry and mass spectrometry. Then, the sequence of the cDNA encoding the hormone precursor was determined. The preprohormone is composed of a 29 amino acid signal peptide, followed by a 41 amino acid associated peptide flanking the 72 amino acid hyperglycemic hormone. Comparison of these data with other known crab hyperglycemic hormone and prohormone sequences was performed using phylogenetic analysis methods.  相似文献   

16.
17.
18.
Fu Q  Christie AE  Li L 《Peptides》2005,26(11):2137-2150
Crustacean hyperglycemic hormone (CHH) precursor-related peptides (CPRPs) are produced during the proteolytic processing of CHH preprohormones. Currently, the physiological roles played by CPRPs are unknown. Due to their large size, direct mass spectrometric sequencing of intact CPRPs is difficult. Here, we describe a novel strategy for sequencing Cancer productus CPRPs directly from a tissue extract using nanoflow liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Four novel CPRPs were characterized with the aid of MS/MS de novo sequencing of 27 truncated CPRP peptides. Extensive modifications (methionine oxidation and carboxy-terminal methylation) were identified in both the full-length and truncated peptides. To investigate the origin of the modifications and truncations, a full-length CPRP was synthesized and subjected to the same storage and extraction protocols used for the characterization of the native peptides. Here, some methionine oxidation was seen, however, no methylation or truncation was evident suggesting much of the chemical complexity seen in the native CPRPs is unlikely due to a sample preparation artifact. Collectively, our study represents the most complete characterization of CPRPs to date and provides a foundation for future investigation of CPRP function in C. productus.  相似文献   

19.
Summary By use of antisera raised against purified moultinhibiting (MIH) and crustacean hyperglycemic hormone (CHH) from Carcinus maenas, complete and distinct neurosecretory pathways for both hormones were demonstrated with the PAP and immunofluorescence technique. By double staining, employing a combination of silver-enhanced immunogold labelling and PAP, both antigens could be visualized in the same section. Immunoreactive structures were studied in Carcinus maenas, Liocarcinus puber, Cancer pagurus, Uca pugilator and Maja squinado. They were only observed in the X-organ sinus gland (SG) system of the eyestalks and consisted of MIH-positive perikarya, which were dispersed among the more numerous CHH-positive perikarya of the medulla terminalis X-organ (XO). The MIH-positive neurons form branching collateral plexuses adjacent to the XO and axons that are arranged around the CHH-positive central axon bundle of the principal XO-SG tract. In the SG, MIH-positive axon profiles and terminals, clustered around hemolymph lacunae, are distributed between the more abundant CHH-positive axon profiles and terminals. Colocalisation of MIH and CHH was never observed. The gross morphology of both neurosecretory systems was similar in all species examined, however, in U. pugilator and M. squinado immunostaining for MIH was relatively faint unless higher concentrations of antiserum were used. Possible reasons for this phenomenon as well as observed moult cycle-related differences in immunostaining are discussed.  相似文献   

20.
Microsatellite loci were characterized in a freshwater prawn from enriched genomic library using six biotinylated probes: (AG)10, (TG)10, (CAA)10, (CAG)10, (GAT)10 and (TAC)10. Primers for DNA amplification were designed and synthesized for 20 loci. Ten loci were polymorphic with the number of alleles ranging from five to 17 alleles per locus and the observed heterozygosity ranging from 0.27 to 0.83 per locus. Developed microsatellite primers should prove useful for selective breeding programs and population genetic studies of freshwater prawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号