首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

2.
The evolution of lifespan is a central question in evolutionary biology, begging the question why there is so large variation among taxa. Specifically, a central quest is to unravel proximate causes of ageing. Here, we show that the degree of unsaturation of liver fatty acids predicts maximum lifespan in 107 bird species. In these birds, the degree of fatty acid unsaturation is positively related to maximum lifespan across species. This is due to a positive effect of monounsaturated fatty acid content, while polyunsaturated fatty acid content negatively correlates with maximum lifespan. Furthermore, fatty acid chain length unsuspectedly increases with maximum lifespan independently of degree of unsaturation. These findings tune theories on the proximate causes of ageing while providing evidence that the evolution of lifespan in birds occurs in association with fatty acid profiles. This suggests that studies of proximate and ultimate questions may facilitate our understanding of these central evolutionary questions.  相似文献   

3.
Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade‐offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation.  相似文献   

4.
Experimental adaptation of Drosophila melanogaster to nutrient-deficient starch-based (S) medium resulted in lifespan shortening, increased early-life fecundity, accelerated reproductive aging, and sexually dimorphic survival curves. The direction of all these evolutionary changes coincides with the direction of phenotypic plasticity observed in non-adapted flies cultured on S medium. High adult mortality rate caused by unfavorable growth medium apparently was the main factor of selection during the evolutionary experiment. The results are partially compatible with Williams’ hypothesis, which states that increased mortality rate should result in relaxed selection against mutations that decrease fitness late in life, and thus promote the evolution of shorter lifespan and earlier reproduction. However, our results do not confirm Williams’ prediction that the sex with higher mortality rate should undergo more rapid aging: lifespan shortening by S medium is more pronounced in naive males than females, but it was female lifespan that decreased more in the course of adaptation. These data, as well as the results of testing of F1 hybrids between adapted and control lineages, are compatible with the idea that the genetic basis of longevity is different in the two sexes, and that evolutionary response to increased mortality rate depends on the degree to which the mortality is selective. Selective mortality can result in the development of longer (rather than shorter) lifespan in the course of evolution. The results also imply that antagonistic pleiotropy of alleles, which increase early-life fecundity at the cost of accelerated aging, played an important role in the evolutionary changes of females in the experimental lineage, while accumulation of deleterious mutations with late-life effects due to drift was more important in the evolution of male traits.  相似文献   

5.
The evolutionary theory of ageing predicts that the timing of senescence has been primarily shaped by the extrinsic mortality rate, which causes selection intensity to decline over time. One difficulty in testing the evolutionary theory of ageing is that extrinsic mortality risk is often confounded with body size and fecundity, which may also directly affect lifespan. Social insects with a pronounced division of labour between worker castes provide a unique opportunity to study the direct effect of extrinsic mortality on the evolution of ageing rates independently of body size, reproductive effort and genetic configuration. In the weaver ant, Oecophylla smaragdina, the major (large) workers perform the risky tasks outside the nest, while the minor (small) workers stay within the highly protected arboreal nest. Hence, this pronounced division of labour is associated with high differences in extrinsic mortality risks. The evolutionary theory of ageing predicts that the minor workers should have a longer intrinsic lifespan than the major workers. In line with this prediction, we found that in a protected environment the minor workers lived significantly longer than the major workers did. Hence, the ageing rate appears to have been moulded by variation in the extrinsic mortality rate independently of size, reproductive effort and genetic configuration.  相似文献   

6.
Rapidly increasing numbers of older people present many countries with growing social and economic challenges. Yet despite the far-reaching implications of ageing, its biological basis remains a topic of much debate. Recent advances in genomics have spurred research on ageing and lifespan in human populations, adding to extensive genetic studies being carried out in model organisms. But how far is ageing controlled by our genes? In this Viewpoint, six experts present their opinions and comment on future directions in ageing research.  相似文献   

7.
Sommer RJ  Ogawa A 《Current biology : CB》2011,21(18):R758-R766
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as?a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its?ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.  相似文献   

8.
We are currently in the midst of a revolution in ageing research,with several dietary,genetic and pharmacological interventions now known to modulate ageing in model organisms.Excitingly,these interventions also appear to have beneficial effects on late-life health.For example,dietary restriction(DR) has been shown to slow the incidence of age-associated cardiovascular disease,metabolic disease,cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans.While the idea that DR's ability to extend lifespan is often thought of as being universal,studies in a range of organisms,including yeast,mice and monkeys,suggest that this may not actually be the case.The precise reasons underlying these differential effects of DR on lifespan are currently unclear,but genetic background may be an important factor in how an individual responds to DR.Similarly,recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background.Consequently,while there is a clear driver to develop interventions to improve late-life health and vitality,understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans.We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.  相似文献   

9.
In the 21st century, researchers have attempted a synthesis between community ecology and evolutionary biology. This emerging research area, which aims to synthesize community ecology and evolutionary biology, is evolutionary community ecology. Evolutionary community ecology addresses how intraspecific trait variation in community members is essential for predicting community properties and, how community properties are a key component of the selective forces that determine genetic and phenotypic variation in a community member. In this paper, I review recent findings in evolutionary community ecology in plant-associated arthropods in terrestrial ecosystems. I discuss roles of both genetic variation and phenotypic plasticity as a source of trait variation in plants in shaping plant-associated arthropod communities. Also, I discuss effects of genetic variation in herbivores on plant-associated arthropod communities. Furthermore, I highlight community context evolution in which multiple species interactions and community composition affect trait evolution of a community member. Finally, I argue that future studies should investigate a feedback loop between community and evolutionary dynamics beyond unidirectional studies on effects of evolution on a community or vice versa. This approach will provide major insights into mechanistic principles for making predictions of community ecology.  相似文献   

10.
Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects.  相似文献   

11.
Ageing can be characterised by a general decline in cellular function, which affects whole-body homoeostasis with metabolic dysfunction—a common hallmark of ageing. The identification and characterisation of the genetic pathways involved are paramount to the understanding of how we age and the development of therapeutic strategies for combating age-related disease. Furthermore, in addition to understanding the ageing process itself, we must understand the interactions ageing has with genetic variation that results in disease phenotypes. The use of model systems such as the mouse, which has a relatively short lifespan, rapid reproduction (resulting in a large number of offspring), well-characterised biology, a fully sequenced genome, and the availability of tools for genetic manipulation is essential for such studies. Here we review the relationship between ageing and metabolism and highlight the need for modelling these processes.  相似文献   

12.
When facing the challenge of developing an individual that best fits its environment, nature demonstrates an interesting combination of two fundamentally different adaptive mechanisms: genetic evolution and phenotypic plasticity. Following numerous computational models, it has become the accepted wisdom that lifetime acclimation (e.g. via learning) smooths the fitness landscape and consequently accelerates evolution. However, analytical studies, focusing on the effect of phenotypic plasticity on evolution in simple unimodal landscapes, have often found that learning hinders the evolutionary process rather than accelerating it. Here, we provide a general framework for studying the effect of plasticity on evolution in multipeaked landscapes and introduce a rigorous mathematical analysis of these dynamics. We show that the convergence rate of the evolutionary process in a given arbitrary one-dimensional fitness landscape is dominated by the largest descent (drawdown) in the landscape and provide numerical evidence to support an analogous dominance also in multidimensional landscapes. We consider several schemes of phenotypic plasticity and examine their effect on the landscape drawdown, identifying the conditions under which phenotypic plasticity is advantageous. The lack of such a drawdown in unimodal landscapes vs. its dominance in multipeaked landscapes accounts for the seemingly contradictory findings of previous studies.  相似文献   

13.
Classic theories of ageing evolution predict that increased extrinsic mortality due to an environmental hazard selects for increased early reproduction, rapid ageing and short intrinsic lifespan. Conversely, emerging theory maintains that when ageing increases susceptibility to an environmental hazard, increased mortality due to this hazard can select against ageing in physiological condition and prolong intrinsic lifespan. However, evolution of slow ageing under high‐condition‐dependent mortality is expected to result from reallocation of resources to different traits and such reallocation may be hampered by sex‐specific trade‐offs. Because same life‐history trait values often have different fitness consequences in males and females, sexually antagonistic selection can preserve genetic variance for lifespan and ageing. We previously showed that increased condition‐dependent mortality caused by heat shock leads to evolution of long‐life, decelerated late‐life mortality in both sexes and increased female fecundity in the nematode, Caenorhabditis remanei. Here, we used these cryopreserved lines to show that males evolving under heat shock suffered from reduced early‐life and net reproduction, while mortality rate had no effect. Our results suggest that heat‐shock resistance and associated long‐life trade‐off with male, but not female, reproduction and therefore sexually antagonistic selection contributes to maintenance of genetic variation for lifespan and fitness in this population.  相似文献   

14.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

15.
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.  相似文献   

16.
Phenotypic plasticity--the capacity of a single genotype to produce different phenotypes in response to varying environmental conditions--is widespread. Yet, whether, and how, plasticity impacts evolutionary diversification is unclear. According to a widely discussed hypothesis, plasticity promotes rapid evolution because genes expressed differentially across different environments (i.e., genes with "biased" expression) experience relaxed genetic constraint and thereby accumulate variation faster than do genes with unbiased expression. Indeed, empirical studies confirm that biased genes evolve faster than unbiased genes in the same genome. An alternative hypothesis holds, however, that the relaxed constraint and faster evolutionary rates of biased genes may be a precondition for, rather than a consequence of, plasticity's evolution. Here, we evaluated these alternative hypotheses by characterizing evolutionary rates of biased and unbiased genes in two species of frogs that exhibit a striking form of phenotypic plasticity. We also characterized orthologs of these genes in four species of frogs that had diverged from the two plastic species before the plasticity evolved. We found that the faster evolutionary rates of biased genes predated the evolution of the plasticity. Furthermore, biased genes showed greater expression variance than did unbiased genes, suggesting that they may be more dispensable. Phenotypic plasticity may therefore evolve when dispensable genes are co-opted for novel function in environmentally induced phenotypes. Thus, relaxed genetic constraint may be a cause--not a consequence--of the evolution of phenotypic plasticity, and thereby contribute to the evolution of novel traits.  相似文献   

17.
Animal lifespans can vary substantially among closely related species and even among conspecific populations, but it is often difficult to identify environmental and genetic factors producing such variation. We used experimental evolution to examine how transfer to a novel environment affects adult lifespan and rates of senescence in a seed-feeding beetle. Three replicate lines of Callosobruchus maculatus (F.) were switched to a new host plant (cowpea), and each evolved shorter adult lifespans compared to a line maintained on the ancestral host (mung bean). However, the evolution of lifespan differed between the sexes; female lifespan was reduced by ~11% in all cowpea replicates, whereas male lifespan decreased by an average of only 5.6% and the magnitude of the reduction varied among replicates. Reduced lifespan in lines switched to cowpea mirrored the shorter lifespan observed in a separate population chronically associated with cowpea. We then performed crosses between the mung bean and cowpea lines to estimate the genetic architecture underlying the rapid evolution of a shorter lifespan on cowpea. Dominance (overdominance) contributed substantially to the difference between the cowpea and mung bean lines for female lifespan but not for male lifespan. However, details of the genetic architecture varied among the three replicate crosses, so that the convergent evolution of shorter female lifespan in the different cowpea lines did not arise from identical allelic substitutions. Our study demonstrates that insect lifespan can be predictably modified by a switch to a novel host plant, that both the magnitude of this response and its underlying genetic architecture can be sex-specific, and that convergent evolution of a complex trait such as lifespan can arise from different genetic mechanisms.  相似文献   

18.
Evolution of phenotypic plasticity: where are we going now?   总被引:25,自引:0,他引:25  
The study of phenotypic plasticity has progressed significantly over the past few decades. We have moved from variation for plasticity being considered as a nuisance in evolutionary studies to it being the primary target of investigations that use an array of methods, including quantitative and molecular genetics, as well as of several approaches that model the evolution of plastic responses. Here, I consider some of the major aspects of research on phenotypic plasticity, assessing where progress has been made and where additional effort is required. I suggest that some areas of research, such the study of the quantitative genetic underpinning of plasticity, have been either settled in broad outline or superseded by new approaches and questions. Other issues, such as the costs of plasticity are currently at the forefront of research in this field, and are likely to be areas of major future development.  相似文献   

19.
Ernst Mayr proposed a distinction between “proximate”, mechanistic, and “ultimate”, evolutionary, causes of biological phenomena. This dichotomy has influenced the thinking of many biologists, but it is increasingly perceived as impeding modern studies of evolutionary processes, including study of “niche construction” in which organisms alter their environments in ways supportive of their evolutionary success. Some still find value for this dichotomy in its separation of answers to “how?” versus “why?”questions about evolution. But “why is A?” questions about evolution necessarily take the form “how does A occur?”, so this separation is illusory. Moreover, the dichotomy distorts our view of evolutionary causality, in that, contra Mayr, the action of natural selection, driven by genotype-phenotype-environment interactions which constitute adaptations, is no less “proximate” than the biological mechanisms which are altered by naturally selected genetic variants. Mayr’s dichotomy thus needs replacement by more realistic, mechanistic views of evolution. From a mechanistic viewpoint, there is a continuum of adaptations from those evolving as responses to unchanging environmental pressures to those evolving as the capacity for niche construction, and intermediate stages of this can be identified. Some biologists postulate an association of “phenotypic plasticity” (phenotype-environment covariation with genotype held constant) with capacity for niche construction. Both “plasticity” and niche construction comprise wide ranges of adaptive mechanisms, often fully heritable and resulting from case-specific evolution. Association of “plasticity” with niche construction is most likely to arise in systems wherein capacity for complex learning and behavioral flexibility have already evolved.  相似文献   

20.
植物表型可塑性研究进展   总被引:11,自引:4,他引:7  
王姝  周道玮 《生态学报》2017,37(24):8161-8169
表型可塑性已成为生态进化发育生物学的核心概念,很大程度上由于植物可塑性研究的主要贡献,但人们仍远未完全了解表型可塑性的原因和结果。从整体角度理出表型可塑性研究发展的基本脉络,介绍研究内容、途径和简史,聚焦于几个主要方面的研究进展及发展方向。现代可塑性研究的兴盛始于关于可塑性的进化学重要性的一篇综述,从现象的描述、对其遗传基础和可塑性本身进化的讨论,发展到探索其背后的发育机制、植物生长与适应策略、生态学影响等。未来可塑性研究应在重新理解和评价表型可塑性及其适应性的基础上,更关注自然条件下环境因子和可塑响应的复杂性。表型可塑性的生态-进化学意义仍将是未来研究的重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号