首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

2.
标记基因的产生方便了植物的转化,随着转基因植物的迅速发展及商品化,人类更关注抗性标记基因的安全性。目前解决的有效途径是发展正向选择系统,使用非抗性的生物安全标记基因,主要包括糖类代谢酶基因(pmi和xylA)、干扰氨基酸代谢酶基因(ak和dapA)、绿色荧光蛋白基因(gfp)、β-葡萄糖苷酸酶基因(gus)、核糖醇操纵子(rtl)和叶绿素生物合成基因(hemL)等。  相似文献   

3.
4.
5.
6.
Nicotianamine aminotransferase (NAAT), the key enzyme involved in the biosynthesis of mugineic acid family phytosiderophores (MAs), catalyzes the amino transfer of nicotianamine (NA). MAs are found only in graminaceous plants, although NA has been detected in every plant so far investigated. Therefore, this amino transfer reaction is the first step in the unique biosynthesis of MAs that has evolved in graminaceous plants. NAAT activity is dramatically induced by Fe deficiency and suppressed by Fe resupply. Based on the protein sequence of NAAT purified from Fe-deficient barley (Hordeum vulgare) roots, two distinct cDNA clones encoding NAAT, naat-A and naat-B, were identified. Their deduced amino acid sequences were homologous to several aminotransferases, and shared consensus sequences for the pyridoxal phosphate-binding site lysine residue and its surrounding residues. The expression of both naat-A and naat-B is increased in Fe-deficient barley roots, while naat-B has a low level of constitutive expression in Fe-sufficient barley roots. No detectable mRNA from either naat-A or naat-B was present in the leaves of either Fe-deficient or Fe-sufficient barley. One genomic clone with a tandem array of naat-B and naat-A in this order was identified. naat-B and naat-A each have six introns at the same locations. The isolation of NAAT genes will pave the way to understanding the mechanism of the response to Fe in graminaceous plants, and may lead to the development of cultivars tolerant to Fe deficiency that can grow in calcareous soils.  相似文献   

7.
Arabidopsis thaliana has two genes, ASA1 and ASA2, encoding the alpha subunit of anthranilate synthase, the enzyme catalyzing the first reaction in the tryptophan biosynthetic pathway. As a branchpoint enzyme in aromatic amino acid biosynthesis, anthranilate synthase has an important regulatory role. The sequences of the plant genes are homologous to their microbial counterparts. Both predicted proteins have putative chloroplast transit peptides at their amino termini and conserved amino acids involved in feedback inhibition by tryptophan. ASA1 and ASA2 cDNAs complement anthranilate synthase alpha subunit mutations in the yeast Saccharomyces cerevisiae and in Escherichia coli, confirming that both genes encode functional anthranilate synthase proteins. The distributions of ASA1 and ASA2 mRNAs in various parts of Arabidopsis plants are overlapping but nonidentical, and ASA1 mRNA is approximately 10 times more abundant in whole plants. Whereas ASA2 is expressed at a constitutive basal level, ASA1 is induced by wounding and bacterial pathogen infiltration, suggesting a novel role for ASA1 in the production of tryptophan pathway metabolites as part of an Arabidopsis defense response. Regulation of key steps in aromatic amino acid biosynthesis in Arabidopsis appears to involve differential expression of duplicated genes.  相似文献   

8.
氨基酸是植物体内必不可少的物质,在植物的生长代谢中发挥着重要作用。与动物不同,植物的氨基酸供给全部靠自身来合成,一旦植物的氨基酸合成受阻,植物便难以继续生存。因此,植物氨基酸合成中的关键酶一直是新型除草剂研发中重要的靶标酶。在目前已经商品化的除草剂中,通过抑制植物氨基酸生物合成中的关键酶活性而发生作用的除草剂占很大比重;与此同时,随着植物转基因技术的不断发展完善,大批耐氨基酸生物合成抑制剂类除草剂转基因植物相继问世,成为了耐除草剂类转基因植物的主体。本文综述了常用的耐氨基酸生物合成抑制剂类除草剂、作用机理及耐除草剂转基因植物的研究进展。  相似文献   

9.
《Phytochemistry》1995,39(4):737-749
The shikimate pathway produces the three proteinogenic aromatic amino acids, phenylalanine, tyrosine and tryptophan, which are, in addition to several intermediates of the shikimate pathway, intermediates in the biosynthesis of numerous aromatic natural products in higher plants. While there is only little difference in the sequence of the chemical reactions of the pathway in bacteria, fungi and plants, considerable differences exist in the organization and regulation of the shikimate pathway in plants, fungi and bacteria. The recent isolation and characterization of cDNAs and genes coding for enzymes of the shikimate pathway in higher plants have confirmed that plastids are the major, if not only site of aromatic amino acid biosynthesis in plants. Furthermore, the observed differential spatial and temporal expression of genes coding for isozymes of the pathway indicates a complex regulation that we are only beginning to understand.  相似文献   

10.
Molecular genetic analysis and regulation of aflatoxin biosynthesis   总被引:15,自引:0,他引:15  
Aflatoxins, produced by some Aspergillus species, are toxic and extremely carcinogenic furanocoumarins. Recent investigations of the molecular mechanism of AFB biosynthesis showed that the genes required for biosynthesis are in a 70 kb gene cluster. They encode a DNA-binding protein functioning in aflatoxin pathway gene regulation, and other enzymes such as cytochrome p450-type monooxygenases, dehydrogenases, methyltransferases, and polyketide and fatty acid synthases. Information gained from these studies has led to a better understanding of aflatoxin biosynthesis by these fungi. The characterization of genes involved in aflatoxin formation affords the opportunity to examine the mechanism of molecular regulation of the aflatoxin biosynthetic pathway, particularly during the interaction between aflatoxin-producing fungi and plants.  相似文献   

11.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
Single step mutants of Bacillus subtilis which required either one or all of the aromatic amino acids for growth were isolated. The relevant gene defect was determined for each mutant by enzyme assays in vitro. A mutant deficient in each enzyme step of aromatic amino acid biosynthesis was found with the exceptions of the shikimate kinase and the phenylalanine and tyrosine transaminases. Representative mutants carrying the defective genes were mapped by deoxyribonucleic acid mediated transformation by reference to the aromatic amino acid gene (aro) cluster and, alternately, to any of the other unlinked aro genes. The genes coding for dehydroquinate synthetase, 3-enol pyruvylshikimate 5-phosphate synthetase, one form of chorismate mutase, and prephenate dehydrogenase are linked to the aro cluster. Except for the previously identified linkage between the genes of 3-deoxy-d-arabino heptulosonic acid 7-phosphate synthetase and one species of chorismate mutase, the other genes involved in this pathway are neither linked to the aro cluster nor to each other.  相似文献   

13.
Rosmarinic acid   总被引:25,自引:0,他引:25  
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. However, it is also found in species of other higher plant families and in some fern and hornwort species. Rosmarinic acid has a number of interesting biological activities, e.g. antiviral, antibacterial, antiinflammatory and antioxidant. The presence of rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting effects. In plants, rosmarinic acid is supposed to act as a preformed constitutively accumulated defence compound. The biosynthesis of rosmarinic acid starts with the amino acids L-phenylalanine and L-tyrosine. All eight enzymes involved in the biosynthesis are known and characterised and cDNAs of several of the involved genes have been isolated. Plant cell cultures, e.g. from Coleus blumei or Salvia officinalis, accumulate rosmarinic acid in amounts much higher than in the plant itself (up to 36% of the cell dry weight). For this reason a biotechnological production of rosmarinic acid with plant cell cultures has been proposed.  相似文献   

14.
15.
Mutants for 9 of the 10 steps in histidine biosynthesis have been isolated and identified by enzyme assay. Each locus has been mapped in relation to the aro cluster and to other histidine loci by deoxyribonucleic acid-mediated transformation. The genes which code for enzymes 3, 6, and 8 of the pathway are linked to the aro cluster. A major histidine linkage group is composed of the genes which specify enzymes 1, 2, 5, 7, and 10. The locus which codes for step 9 of the pathway is unlinked to any other identified his loci. The major histidine cluster is loosely linked to cysB and is unlinked to any of the loci concerned with aromatic amino acid biosynthesis.  相似文献   

16.
A major nutritional drawback of many crop plants is their low content of several essential amino acids, particularly lysine. The biosynthesis of lysine in plants is regulated by several feedback loops. Dihydrodipicolinate synthase (DHPS) from Escherichia coli, a key enzyme in lysine biosynthesis, which is considerably less sensitive to lysine accumulation than the endogenous plant enzyme has been expressed in chloroplasts of tobacco leaves. Expression of the bacterial enzyme was accompanied by a significant increase in the level of free lysine. No increase in protein-bound lysine was evident. Free lysine accumulation was positively correlated with the level of DHPS activity in various transgenic plants. Compartmentalization of DHPS in the chloroplast was essential for its participation in lysine biosynthesis as no lysine overproduction was obtained in transgenic plants that expressed the bacterial enzyme in the cytoplasm. The elevated level of free lysine in the transgenic plants was sufficient to inhibit, in vivo, a second key enzyme in lysine biosynthesis, namely, aspartate kinase, with no apparent influence on lysine accumulation. The present report not only provides a better understanding of the regulation of lysine biosynthesis in higher plants but also offers a new strategy to improve the production of this essential amino acid.  相似文献   

17.
18.
The use of mutants and transgenic plants to study amino acid metabolism   总被引:7,自引:0,他引:7  
Mutants of higher plants with alterations in amino acid metabolism have now been available for 20 years. Following the realization that at least four distinct classes of herbicides (phosphinothricins, glyphosates, imidazolinones and sulphonylureas) act by the inhibition of amino acid biosynthesis, mutants resistant to the herbicides have also been obtained. More recently, transgenic plants containing altered levels of enzymes of amino acid biosynthesis have been constructed. In this article, we have attempted to review several areas of amino acid biosynthesis including ammonia assimilation, the aspartate pathway, branched chain amino acids, aromatic amino acids and proline.  相似文献   

19.
20.
Strictosidine beta-D-glucosidase (SGD) is an enzyme involved in the biosynthesis of terpenoid indole alkaloids (TIAs) by converting strictosidine to cathenamine. The biosynthetic pathway toward strictosidine is thought to be similar in all TIA-producing plants. Somewhere downstream of strictosidine formation, however, the biosynthesis diverges to give rise to the different TIAs found. SGD may play a role in creating this biosynthetic diversity. We have studied SGD at both the molecular and enzymatic levels. Based on the homology between different plant beta-glucosidases, degenerate polymerase chain reaction primers were designed and used to isolate a cDNA clone from a Catharanthus roseus cDNA library. A full-length clone gave rise to SGD activity when expressed in Saccharomyces cerevisiae. SGD shows approximately 60% homology at the amino acid level to other beta-glucosidases from plants and is encoded by a single-copy gene. Sgd expression is induced by methyl jasmonate with kinetics similar to those of two other genes acting prior to Sgd in TIA biosynthesis. These results show that coordinate induction of the biosynthetic genes forms at least part of the mechanism for the methyl jasmonate-induced increase in TIA production. Using a novel in vivo staining method, subcellular localization studies of SGD were performed. This showed that SGD is most likely associated with the endoplasmic reticulum, which is in accordance with the presence of a putative signal sequence, but in contrast to previous localization studies. This new insight in SGD localization has significant implications for our understanding of the complex intracellular trafficking of metabolic intermediates during TIA biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号