首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).  相似文献   

2.
ric-8 (resistance to inhibitors of cholinesterase 8) genes have positive roles in variegated G protein signaling pathways, including Gα(q) and Gα(s) regulation of neurotransmission, Gα(i)-dependent mitotic spindle positioning during (asymmetric) cell division, and Gα(olf)-dependent odorant receptor signaling. Mammalian Ric-8 activities are partitioned between two genes, ric-8A and ric-8B. Ric-8A is a guanine nucleotide exchange factor (GEF) for Gα(i)/α(q)/α(12/13) subunits. Ric-8B potentiated G(s) signaling presumably as a Gα(s)-class GEF activator, but no demonstration has shown Ric-8B GEF activity. Here, two Ric-8B isoforms were purified and found to be Gα subunit GDP release factor/GEFs. In HeLa cells, full-length Ric-8B (Ric-8BFL) bound endogenously expressed Gα(s) and lesser amounts of Gα(q) and Gα(13). Ric-8BFL stimulated guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding to these subunits and Gα(olf), whereas the Ric-8BΔ9 isoform stimulated Gα(s short) GTPγS binding only. Michaelis-Menten experiments showed that Ric-8BFL elevated the V(max) of Gα(s) steady state GTP hydrolysis and the apparent K(m) values of GTP binding to Gα(s) from ~385 nm to an estimated value of ~42 μM. Directionality of the Ric-8BFL-catalyzed Gα(s) exchange reaction was GTP-dependent. At sub-K(m) GTP, Ric-BFL was inhibitory to exchange despite being a rapid GDP release accelerator. Ric-8BFL binds nucleotide-free Gα(s) tightly, and near-K(m) GTP levels were required to dissociate the Ric-8B·Gα nucleotide-free intermediate to release free Ric-8B and Gα-GTP. Ric-8BFL-catalyzed nucleotide exchange probably proceeds in the forward direction to produce Gα-GTP in cells.  相似文献   

3.
Nucleobindin 1 (NUCB1) is a widely expressed multidomain calcium-binding protein whose precise physiological and biochemical functions are not well understood. We engineered and heterologously expressed a soluble form of NUCB1 (sNUCB1) and characterized its biophysical and biochemical properties. We show that sNUCB1 exists as a dimer in solution and that each monomer binds two divalent calcium cations. Calcium binding causes conformational changes in sNUCB1 as judged by circular dichroism and fluorescence spectroscopy experiments. Earlier reports suggested that NUCB1 might interact with heterotrimeric G protein α subunits. We show that dimeric calcium-free sNUCB1 binds to expressed Gαi1 and that calcium binding inhibits the interaction. The binding of sNUCB1 to Gαi1 inhibits its basal rate of GDP release and slows its rate and extent of GTPγS uptake. Additionally, our tissue culture experiments show that sNUCB1 prevents receptor-mediated Gαi-dependent inhibition of adenylyl cyclase. Thus, we conclude that sNUCB1 is a calcium-dependent guanine nucleotide dissociation inhibitor (GDI) for Gαi1. To our knowledge, sNUCB1 is the first example of a calcium-dependent GDI for heterotrimeric G proteins. We also show that the mechanism of GDI activity of sNUCB1 is unique and does not arise from the consensus GoLoco motif found in RGS proteins. We propose that cytoplasmic NUCB1 might function to regulate heterotrimeric G protein trafficking and G protein-coupled receptor-mediated signal transduction pathways.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gβγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gβγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.  相似文献   

5.
GIV/Girdin is a multidomain signaling molecule that enhances PI3K-Akt signals downstream of both G protein-coupled and growth factor receptors. We previously reported that GIV triggers cell migration via its C-terminal guanine-nucleotide exchange factor (GEF) motif that activates Gαi. Recently we discovered that GIV's C-terminus directly interacts with the epidermal growth factor receptor (EGFR), and when its GEF function is intact, a Gαi-GIV-EGFR signaling complex assembles. By coupling G proteins to growth factor receptors, GIV is uniquely poised to intercept the incoming receptor-initiated signals and modulate them via G protein intermediates. Subsequent work has revealed that expression of the highly specialized C-terminus of GIV undergoes a bipartite dysregulation during oncogenesis-full length GIV with an intact C-terminus is expressed at levels ~20–50-fold above normal in highly invasive cancer cells and metastatic tumors, but its C-terminus is truncated by alternative splicing in poorly invasive cancer cells and non-invasive tumors. The consequences of such dysregulation on graded signal transduction and cellular phenotypes in the normal epithelium and its implication during tumor progression are discussed herein. Based on the fact that GIV grades incoming signals initiated by ligand-activated receptors by linking them to cyclical activation of G proteins, we propose that GIV is a molecular rheostat for signal transduction.  相似文献   

6.
RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated Gα(13) in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of Gα(13) docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the α3b helix of DH reduces binding to activated Gα(13) and ablates the stimulation of p115 by Gα(13). Complementary mutations at the predicted DH-binding site in the αB-αC loop of the helical domain of Gα(13) also affect stimulation of p115 by Gα(13). Although the GAP activity of p115 is not required for stimulation by Gα(13), two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of Gα(13) to the RH domain facilitates direct association of Gα(13) to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.  相似文献   

7.
Autophagy is the major catabolic process responsible for the removal of aggregated proteins and damaged organelles. Autophagy is regulated by both G proteins and growth factors, but the underlying mechanism of how they are coordinated during initiation and reversal of autophagy is unknown. Using protein-protein interaction assays, G protein enzymology, and morphological analysis, we demonstrate here that Gα-interacting, vesicle-associated protein (GIV, a. k. a. Girdin), a nonreceptor guanine nucleotide exchange factor for Gα(i3), plays a key role in regulating autophagy and that dynamic interplay between Gα(i3), activator of G-protein signaling 3 (AGS3, its guanine nucleotide dissociation inhibitor), and GIV determines whether autophagy is promoted or inhibited. We found that AGS3 directly binds light chain 3 (LC3), recruits Gα(i3) to LC3-positive membranes upon starvation, and promotes autophagy by inhibiting the G protein. Upon growth factor stimulation, GIV disrupts the Gα(i3)-AGS3 complex, releases Gα(i3) from LC3-positive membranes, enhances anti-autophagic signaling pathways, and inhibits autophagy by activating the G protein. These results provide mechanistic insights into how reversible modulation of Gα(i3) activity by AGS3 and GIV maintains the delicate equilibrium between promotion and inhibition of autophagy.  相似文献   

8.
9.
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.  相似文献   

10.
Ja WW  Roberts RW 《Biochemistry》2004,43(28):9265-9275
The G protein regulatory (GPR) motif is a approximately 20-residue conserved domain that acts as a guanine dissociation inhibitor (GDI) for G(i/o)(alpha) subunits. Here, we describe the isolation of peptides derived from a GPR consensus sequence using mRNA display selection libraries. Biotinylated G(i)(alpha)(1), modified at either the N or C terminus, serves as a high-affinity binding target for mRNA-displayed GPR peptides. In vitro selection using mRNA display libraries based on the C terminus of the GPR motif revealed novel peptide sequences with conserved residues. Surprisingly, selected peptides contain mutations to a highly conserved Arg in the GPR motif, previously shown to be crucial for binding and inhibition activities. The dominant peptide from the selection, R6A, and a minimal 9-mer peptide, R6A-1, do not contain Arg residues yet retain high affinity (K(D) = 60 and 200 nM, respectively) and specificity for the GDP-bound state of G(i)(alpha)(1), as measured by surface plasmon resonance. The selected peptides also maintain GDI activity for G(i)(alpha)(1), inhibiting both the exchange of GDP in GTPgammaS binding assays and the AlF(4)(-)-stimulated enhancement of intrinsic tryptophan fluorescence. The kinetics of GDI activity, however, are different for the selected peptides and demonstrate biphasic kinetics, suggesting a complex mechanism for inhibition. Like the GPR motif, the R6A and R6A-1 peptides compete with G(betagamma) subunits for binding to G(i)(alpha)(1), suggesting their use as activators of G(betagamma) signaling.  相似文献   

11.
Heterotrimeric G proteins, consisting of Gα, Gβ, and Gγ subunits, play important roles in plant development and cell signaling. In Arabidopsis, in addition to one prototypical G protein α subunit, GPA1, there are three extra-large G proteins, XLG1, XLG2, and XLG3, of largely unknown function. Each extra-large G (XLG) protein has a C-terminal Gα-like region and a ~400 amino acid N-terminal extension. Here we show that the three XLG proteins specifically bind and hydrolyze GTP, despite the fact that these plant-specific proteins lack key conserved amino acid residues important for GTP binding and hydrolysis of GTP in mammalian Gα proteins. Moreover, unlike other known Gα proteins, these activities require Ca(2+) instead of Mg(2+) as a cofactor. Yeast two-hybrid library screening and in vitro protein pull-down assays revealed that XLG2 interacts with the nuclear protein RTV1 (related to vernalization 1). Electrophoretic mobility shift assays show that RTV1 binds to DNA in vitro in a non-sequence-specific manner and that GTP-bound XLG2 promotes the DNA binding activity of RTV1. Overexpression of RTV1 results in early flowering. Combined overexpression of XLG2 and RTV1 enhances this early flowering phenotype and elevates expression of the floral pathway integrator genes, FT and SOC1, but does not repress expression of the floral repressor, FLC. Chromatin immunoprecipitation assays show that XLG2 increases RTV1 binding to FT and SOC1 promoters. Thus, a Ca(2+)-dependent G protein, XLG2, promotes RTV1 DNA binding activity for a subset of floral integrator genes and contributes to floral transition.  相似文献   

12.
Activation of trimeric G proteins has been traditionally viewed as the exclusive job of G protein-coupled receptors (GPCRs). This view has been challenged by the discovery of non-receptor activators of trimeric G proteins. Among them, GIV (a.k.a. Girdin) is the first for which a guanine nucleotide exchange factor (GEF) activity has been unequivocally associated with a well defined motif. Here we discuss how GIV assembles alternative signaling pathways by sensing cues from various classes of surface receptors and relaying them via G protein activation. We also describe the dysregulation of this mechanism in disease and how its targeting holds promise for novel therapeutics.  相似文献   

13.
G-proteins cycle between an inactive GDP-bound state and an active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage display to identify a series of peptides that bind G alpha subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069-1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP x AlF4(-)- and GTPgammaS-bound states of G alpha(i) subunits. KB-1753 blocks interaction of G alpha(transducin) with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated G alpha in vitro. The crystal structure of KB-1753 bound to G alpha(i1) x GDP x AlF4(-) reveals binding to a conserved hydrophobic groove between switch II and alpha3 helices and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for G alpha(i) subunits.  相似文献   

14.
GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell–ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.  相似文献   

15.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.  相似文献   

16.
17.
G protein-gated inwardly rectifying potassium channel (GIRK) plays a crucial role in regulating heart rate and neuronal excitability. The gating of GIRK is regulated by the association and dissociation of G protein βγ subunits (Gβγ), which are released from pertussis toxin-sensitive G protein α subunit (Gα(i/o)) upon GPCR activation in vivo. Several lines of evidence indicate that Gα(i/o) also interacts directly with GIRK, playing functional roles in the signaling efficiency and the modulation of the channel activity. However, the underlying mechanism for GIRK regulation by Gα(i/o) remains to be elucidated. Here, we performed NMR analyses of the interaction between the cytoplasmic region of GIRK1 and Gα(i3) in the GTP-bound state. The NMR spectral changes of Gα upon the addition of GIRK as well as the transferred cross-saturation (TCS) results indicated their direct binding mode, where the K(d) value was estimated as ~1 mm. The TCS experiments identified the direct binding sites on Gα and GIRK as the α2/α3 helices on the GTPase domain of Gα and the αA helix of GIRK. In addition, the TCS and paramagnetic relaxation enhancement results suggested that the helical domain of Gα transiently interacts with the αA helix of GIRK. Based on these results, we built a docking model of Gα and GIRK, suggesting the molecular basis for efficient GIRK deactivation by Gα(i/o).  相似文献   

18.
GIV/Girdin is a multidomain signaling molecule that enhances PI3K-Akt signals downstream of both G protein-coupled and growth factor receptors. We previously reported that GIV triggers cell migration via its C-terminal guanine nucleotide exchange factor (GEF) motif that activates Gαi. Recently we discovered that GIV''s C-terminus directly interacts with the epidermal growth factor receptor (EGFR) and when its GEF function is intact, a Gαi-GIV-EGFR signaling complex assembles. By coupling G proteins to growth factor receptors, GIV is uniquely poised to intercept the incoming receptor-initiated signals and modulate them via G protein intermediates. Subsequent work has revealed that expression of the highly specialized C-terminus of GIV undergoes a bipartite dysregulation during oncogenesis—full-length GIV with an intact C-terminus is expressed at levels ∼20–50-fold above normal in highly invasive cancer cells and metastatic tumors, but its C-terminus is truncated by alternative splicing in poorly invasive cancer cells and non-invasive tumors. The consequences of such dysregulation on graded signal transduction and cellular phenotypes in the normal epithelium and its implication during tumor progression are discussed herein. Based on the fact that GIV grades incoming signals initiated by ligand-activated receptors by linking them to cyclical activation of G proteins, we propose that GIV is a molecular rheostat for signal transduction.Key words: G proteins, girdin, guanine nucleotide exchange factor, epidermal growth factor-receptor, G protein coupled receptors, metastasis, migration-proliferation dichotomy, growth factors, alternative splicing, PI3-kinase, Akt, rheostat, actin cytoskeleton  相似文献   

19.
20.
A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号