首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Advanced-generation domestication programs for forest-tree species has raised some concerns about the maintenance of genetic diversity in forest-tree breeding programs. Genetic diversity in natural stands was compared with two genetic conservation options for a third-generation elite Pinus taeda breeding population. The breeding population was subdivided either on the basis of geographic origin and selection goals (multiple-population or MPBS option) or stratified according to genetic value (hierarchical or HOPE option). Most allelic diversity in the natural stands of loblolly pine is present in the domesticated breeding populations. This was true at the aggregate level for both multiple-population (MPBS) and the hierarchical (HOPE) populations. Individual subpopulations within each option had less genetic diversity but it did not decline as generations of improvement increased. Genetic differentiation within the subdivided breeding populations ranged from 1 to 5%, genetic variability is within each subpopulation rather than among subpopulations for both MPBS (>95%) and the HOPE approaches (>98%). Nei's Gst estimates for amongpopulation differentiation were biased upwards relative to estimates of from Weir and Cockerham (1984).  相似文献   

3.
Megacodon stylophorus (Clarke) Smith is a perennial alpine herb endemic to the species-rich eastern Himalayan region. Its populations are locally scattered as isolated patches throughout this region. Genetic variation within and among six populations of this species was assessed using ISSR fingerprinting with 13 primers. High levels of genetic diversity exist within species (P = 69.83%, HT = 0.1949 and Hsp = 0.3047), while the within-population diversity is low (P = 11.21%, HE = 0.0532 and Hpop = 0.0792). Extraordinarily high levels of genetic differentiation were detected among populations based on various statistics, including Neis genetic diversity analysis (72.7%), Shannons diversity index (74.01%) and AMOVA (80.70%). That is, populations shared low levels of genetic identity (I = 0.8203 ± 0.0430). This genetic structure was probably due to severe genetic drift of the small-sized patchy populations resulting from postglacial habitat fragmentations. The observed genetic structure of the populations implies that as many populations as possible should be considered for any in situ and ex situ conservation practice on this species.  相似文献   

4.

Aim

Archipelagos provide ideal natural systems for testing the effects of isolation and fragmentation of habitats on the genetic makeup of populations—an important consideration, given that many insular species are of conservation concern. Two theories predominate: Island Biogeography Theory (IBT) posits that proximity to the mainland drives the potential for migrants and gene flow. The Central Marginal Hypothesis (CMH) predicts that island populations at the periphery of a species range may experience low gene flow, small population size and high rates of genetic drift. We investigated population genetic structure, genetic diversity and key drivers of diversity for Arctic island‐dwelling caribou (Rangifer tarandus). Our aim was to inform intraspecific units for conservation and decipher how IBT and CMH could act in an archipelago where isolation is highly variable due to sea ice and open water.

Location

Canadian Arctic Archipelago, Canada (Latitude, 55–82°N; Longitude, 61–123°W).

Methods

We genotyped 447 caribou at 16 microsatellite loci; these caribou represented two subspecies (R. t. groenlandicus, R. t. pearyi) and three designatable units. We used hierarchical Bayesian clustering and ordination to determine genetic groups. We evaluated the influence of ecological and geographic variables on genetic diversity using linear mixed‐effects models and compared diversity among mainland and island herds.

Results

Bayesian clustering revealed nine genetic clusters with differentiation among and within caribou subspecies. Genetic differentiation was explained predominantly by isolation‐by‐distance across all caribou, even at the scale of subspecies. Island caribou were less genetically diverse than mainland herds; individual heterozygosity was negatively correlated with distance‐to‐mainland and the extent of autumn ice‐free coastline and positively correlated with unglaciated island size.

Main conclusions

Our findings underscore the importance of hierarchical analysis when investigating genetic population structure. Genetic diversity and its key drivers lend support to both IBT and CMH and highlight the pending threat of climate change for Arctic island caribou.
  相似文献   

5.
As the globally dominant group of pollinators, bees provide a key ecosystem service for natural and agricultural landscapes. Their corresponding global decline thus poses an important threat to plant populations and the ecosystems they support. Bee conservation requires rapid and effective tools to identify and delineate species. Here, we apply DNA barcoding to Irish solitary bees as the first step towards a DNA barcode library for European solitary bees. Using the standard barcoding sequence, we were able to identify 51 of 55 species. Potential problems included a suite of species in the genus Andrena, which were recalcitrant to sequencing, mitochondrial heteroplasmy and parasitic flies, which led to the production of erroneous sequences from DNA extracts. DNA barcoding enabled the assignment of morphologically unidentifiable females of the parasitic genus Sphecodes to their nominal taxa. It also enabled correction of the Irish bee list for morphologically inaccurately identified specimens. However, the standard COI barcode was unable to differentiate the recently diverged taxa Sphecodes ferruginatus and S. hyalinatus. Overall, our results show that DNA barcoding provides an excellent identification tool for Irish solitary bees and should be rolled out to provide a database for solitary bees globally.  相似文献   

6.
The necessity for conservation of the geneticcomponent of biodiversity is now widelyrecognised. A broad genetic base is required tomaintain evolutionary potential and thepopulation erosion occurring in much of theworld's forests threatens the genetic integrityof many tree species. Spanish Cedar (Cedrela odorata L.) has been under severepressure for generations and is now the focusof a study aimed at assessing the levels anddistribution of genetic diversity in remainingpopulations. Ten Costa Rican populations wereanalysed using chloroplast and AFLP markers.The overall level of diversity was as expectedfor an outcrossing, long-lived, woody species(H T = 0.27). However, this concealeda deep divergence within the species, forchloroplast and AFLP (CT = 0.83)markers. Populations were differentiated in twogroups that exhibited contrasting habitatpreferences and two ecotypes, wet and dry, wereidentified. Within the ecotypes, all but onepopulation were fixed for a single chloroplasthaplotype and within populations, total genomicdiversity levels were low (H S= 0.03–0.13). Populations possessing the dryecotype maintained significantly more diversitythan those from wet regions. Within the wetecotype group, pairwise genetic distancebetween populations fitted an isolation bydistance model. The group was stronglysubdivided and showed isolation by distancearound the southern edge of the centralmountain ranges. The genetic divergence of thetwo ecotypes, observed at both organellar andnuclear loci, identifies evolutionarilysignificant units that, taken together withprevious studies of the species, provide arational basis on which to build a conservationpolicy for the species.  相似文献   

7.
The conservation genetics of bees is of particular interest because many bee species are in decline, so jeopardizing the essential ecosystem service of plant pollination that they provide. In addition, as social haplodiploids, inbred bees may be vulnerable to the extra genetic load represented by the production of sterile diploid males. Using microsatellite markers, we investigated the genetic structure of populations of the Great Yellow Bumblebee (Bombus distinguendus Morawitz) in the UK, where this species has undergone a precipitous decline. By means of a mixture of analytical methods and simulation, we also extended—and then applied—genetic methods for estimating foraging distance and nest density in wild bees. B. distinguendus populations were characterized by low expected heterozygosity and allelic richness, inbreeding coefficients not significantly different from zero, absence of detected diploid males, absence of substantial demographic bottlenecking, and population substructuring at large (c. 100+ km) but not small (10s of km) spatial scales. The minimum average effective population size at our sampling sites was low (c. 25). In coastal grassland (machair), the estimated modal foraging distance of workers was 391 m, with 95% of foraging activity occurring within 955 m of the nest, and estimated nest density was 19.3 nests km‐2. These findings show that B. distinguendus exhibits some genetic features of scarce, declining or fragmented populations. Moreover, B. distinguendus workers appear to forage over above‐average distances and nests remain thinly distributed even in current strongholds. These considerations should inform future conservation actions for this and similar species.  相似文献   

8.
Currently, many Brazilian orchids are threatened with extinction resulting from habitat loss and intense harvesting pressure stemming from their value as ornamental plants. Therefore, the genetic diversity in remaining populations is fundamental to the survival of these species in natural environments. In order to inform conservation strategies, this study evaluated the genetic diversity and structure of Cattleya granulosa populations. The sample consisted of 151 individuals from 12 populations in the Atlantic Forest, northeastern Brazil, evaluated using 91 ISSR markers. Genetic variability was assessed through molecular variance, diversity indexes, clusters of genotypes through Bayesian analysis, and tests for genetic bottlenecks. From all polymorphic loci, genetic diversity (HE) varied between 0.210 and 0.321 and the Shannon index ranged from 0.323 and 0.472. Significant genetic differentiation between populations (ΦST = 0.391; P < 0.0001) resulted in the division of the populations into five groups based on the log-likelihood Bayesian analysis. We found significant positive correlation between geographical and genetic distances between populations (r = 0.794; P = 0.017), indicating isolation by distance. Patterns of allelic diversity within populations suggest the occurrence of bottlenecks in most C. granulosa populations (n = 8). Therefore, in order to maintain the genetic diversity of the species, the conservation of spatially distant groups is necessary.  相似文献   

9.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

10.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

11.

Background and Aims

The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.

Methods

Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.

Key Results

The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.

Conclusions

Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.  相似文献   

12.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   

13.
The conservation status of small breeding areas of the Goosander (Mergus merganser merganser) in Central Europe is unclear. Geographic isolation of these areas suggests restricted gene flow to and from large North-European populations. On the other hand, migrating Goosanders from northern Europe join the Central European breeding population for wintering. To evaluate the conservation status of the small breeding areas we assessed the genetic structure of M. merganser populations in Europe by examining two nuclear marker systems (microsatellites and Single Nucleotide Polymorphisms, SNP) and mitochondrial (mtDNA) control region sequence variation for Goosanders in 11 sampling areas representing three of five distinct breeding areas and two subspecies (M. m. merganser and M. m. americanus). Overall population differentiation estimates including both subspecies were high, both based on mtDNA () and nuclear markers (θ ST = 0.219; 95% CI 0.088–0.398, SNP and microsatellites combined). Within Europe, mtDNA revealed a strong overall () and significant pairwise population differentiation between almost all comparisons. In contrast, both nuclear marker systems combined revealed only a small overall genetic differentiation (θ ST = 0.022; 95% CI 0.003–0.041). The strong genetic differentiation based on female-inherited mtDNA but not on biparentally inherited nuclear markers can be explained by sex-biased dispersal and strong female philopatry. Therefore, small breeding areas in Europe are endangered despite large male-mediated gene-flow, because when these populations decline, only males—but due to strong philopatry not females—can be efficiently supplemented by migration from the large North European populations. We therefore propose to manage the small breeding areas independently and to strengthen conservation efforts for this species in Central Europe.  相似文献   

14.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

15.
As a consequence of founder effects, small population size and demographic constraints, island populations are often characterized by low genetic diversity and high inbreeding. The effects of inbreeding are more pronounced in haplo-diploid insects like bees than in similar diploid species, because their method of sex determination requires heterozygosity at a sex locus. Inbreeding leads to homozygosity at the sex locus and the production of non-viable diploid males. This means that island populations of bees are particularly prone to extinction. Here we determine the levels of diversity and isolation between islands and mainland populations of the bumble bee Bombus morio in southeast Brazil. We analyzed 659 individuals from 24 populations, sequencing two mitochondrial genes (COI and Cytb) and genotyping all individuals at 14 microsatellite loci. Surprisingly, genetic diversity was high and genetic isolation was low in all populations except Teodoro Sampaio (mainland) and Ilha da Vitória (island). Genetic diversity is not significantly correlated with island area, but is lower in populations that are more distant from the mainland. Except perhaps for Ilha da Vitória, we suggest that the island populations are unlikely to go extinct due to genetic factors. Finally, based on its genetic distance from all other populations, we identify a putative new subspecies in the Teodoro Sampaio region.  相似文献   

16.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

17.
  • Genetic differences among freshwater fish populations are dependent on life‐history characteristics of the species, including the range of adult dispersal and the extent of homing to natal breeding grounds. However, the effects of variation in such characteristics on population genetic connectivity are rarely studied comparatively among closely related species.
  • We studied population genetic structure within three congeneric cyprinid species from the Lake Malawi catchment that differ substantially in life‐history traits and conservation status, using a combination of microsatellite and mitochondrial DNA markers. Mpasa (Opsaridium microlepis) is a large (70 cm total length) migratory species that spawns in rivers, but as an adult is exclusively known from the main lake body. Sanjika (Opsaridium microcephalum), is a medium size (30 cm total length) species that exists in lake breeding, river‐lake migratory and apparently landlocked populations. Dwarf sanjika (Opsaridium tweddleorum) is a small non‐migratory species (15 cm total length) that persists in small tributaries surrounding the main lake and adjoining rivers.
  • The results revealed striking differences among the three species in spatial genetic structuring. The river‐lake migratory mpasa showed only weak yet significant population genetic structure within the main Lake Malawi catchment, suggesting that there is no strong natal homing. The habitat‐generalist sanjika showed only weak spatial genetic differentiation at microsatellite loci within the Lake Malawi catchment, but moderate structure in mitochondrial DNA, potentially reflecting male‐biased dispersal. The river‐restricted dwarf sanjika showed strong genetic structure in both microsatellite and mitochondrial DNA, suggesting strictly limited dispersal at both adult and juvenile stages.
  • We conclude that contrasting migration life histories have resulted in dramatically different patterns of population genetic structure among these congeneric species. The observed patterns demonstrate how divergent life‐history evolution may strongly influence broader patterns of population genetic connectivity in freshwater fish, with consequences for management and conservation. Specifically the results suggesting gene flow among Lake Malawi populations of mpasa, an IUCN red‐listed ‘Endangered’ species endemic to the lake catchment, imply that conservation initiatives operating at both local and catchment scales are needed to reverse local population decline.
  相似文献   

18.
Genetic variability and differences in wild striped snakehead Channa striata from Malaysia were analysed by genotyping nine novel nuclear microsatellite loci. Analysis revealed moderate‐to‐high genetic diversity in most of the populations, indicative of large effective population sizes. The highly diversified populations are admixed populations and, therefore, can be recommended as potential candidates for selective breeding and conservation since they each contain most of the alleles found in their particular region. Three homogenous groups of the wild populations were identified, apparently separated by effective barriers, in accordance with contemporary drainage patterns. The highest population pairwise FST found between members of the same group reflects the ancient population connectivity; yet prolonged geographical isolation resulted in adaptation of alleles to local contemporary environmental change. A significant relationship between genetic distance and geographical isolation was observed (r = 0·644, P < 0·01). Anthropogenic perturbations indicated apparent genetic proximity between distant populations.  相似文献   

19.
Genetic diversity in an insular endemic plantAster asa-grayi was examined using enzyme electrophoresis. Distribution ofA. asa-grayi is restricted to only four subtropical islands of Japan, and this species is listed as vulnerable to extinction in the Red Data Book of Japanese wild plants. A total of 161 individuals were sampled from five populations on four islands. Genetic diversity values at the population level were very low, compared to other plant species with a similar life history. Genetic variability at the species level is comparable to the mean value of endemic species. Genetic differentiation among populations is extremely high (GST= 0.71), indicating that the gene flow among populations is highly impeded, and pollen and seed dispersal is limited due to the pollinators and the seed morphology. This is because the four islands are geographically isolated. Fixation indices suggested that most populations do not randomly cross. To conserve the genetic diversity of the species, artificial crossings among different island populations are necessary.  相似文献   

20.
1. Determined by landscape structure as well as dispersal‐related traits of species, connectivity influences various key aspects of population biology, ranging from population persistence to genetic structure and diversity. Here, we investigated differences in small‐scale connectivity in terms of gene flow between populations of two ecologically important invertebrates with contrasting dispersal‐related traits: an amphipod (Gammarus fossarum) with a purely aquatic life cycle and a mayfly (Baetis rhodani) with a terrestrial adult stage. 2. We used highly polymorphic markers to estimate genetic differentiation between populations of both species within a Swiss pre‐alpine catchment and compared these results to the broader‐scale genetic structure within the Rhine drainage. Landscape genetic approaches were used to test for correlations of genetic and geographical structures and in‐stream barrier effects. 3. We found overall very weak genetic structure in populations of B. rhodani. In contrast, G. fossarum showed strong genetic differentiation, even at spatial scales of a few kilometres, and a clear pattern of isolation by distance. Genetic diversity decreased from downstream towards upstream populations of G. fossarum, suggesting asymmetric gene flow. Correlation of genetic structure with landscape topography was more pronounced in the amphipod. Our study also indicates that G. fossarum might be capable of dispersing overland in headwater regions and of crossing small in‐stream barriers. 4. We speculate that differences in dispersal capacity but also habitat specialisation and potentially the extent of local adaptation could be responsible for the differences in genetic differentiation found between the two species. These results highlight the importance of taking into account dispersal‐related traits when planning management and conservation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号