首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic biology of blood vascular endothelial cells has been well documented. However, little is known about that of lymphatic endothelial cells, despite their importance under normal and pathological conditions. The lack of a lymphatic endothelial cell line has hampered progress in this field. The objective of this study has been to establish and characterize lymphatic and venous endothelial cell lines derived from newly developed tsA58/EGFP transgenic rats harboring the temperature-sensitive simian virus 40 (SV40) large T-antigen and enhanced green fluorescent protein (EGFP). Endothelial cells were isolated from the transgenic rats by intraluminal enzymatic digestion. The cloned cell lines were named TR-LE (temperature-sensitive rat lymphatic endothelial cells from thoracic duct) and TR-BE (temperature-sensitive rat blood-vessel endothelial cells from inferior vena cava), respectively, and cultured on fibronectin-coated dishes in HuMedia-EG2 supplemented with 20% fetal bovine serum and Endothelial Mitogen at a permissive temperature, 33°C. A temperature shift to 37°C resulted in a decrease in proliferation with degradation of the large T-antigen and cleavage of poly (ADP-ribose) polymerase. TR-LE cells expressed lymphatic endothelial markers VEGFR-3 (vascular endothelial growth factor receptor), LYVE-1 (a lymphatic endothelial receptor), Prox-1 (a homeobox gene product), and podoplanin (a glomerular podocyte membrane mucoprotein), together with endothelial markers CD31, Tie-2, and VEGFR-2, whereas TR-BE cells expressed CD31, Tie-2, and VEGFR-2, but no lymphatic endothelial markers. Thus, these conditionally immortalized and EGFP-expressing lymphatic and vascular endothelial cell lines might represent an important tool for the study of endothelial cell functions in vitro.M. Matsuo and K. Koizumi contributed equally to this work. This study was supported in part by Grants-in-Aid for the 21st Century COE Program and for CLUSTER (Cooperative Link of Unique Science and Technology for Economy Revitalization) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.  相似文献   

2.
3.
The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ~ JR > KE, and of doxorubicin was JR ~ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.  相似文献   

4.
Cadmium represents a major environmental pollutant that may induce severe damage, especially in the kidney where cadmium accumulates. While cadmium is known to severely impair renal tubular functions, glomerular structures are also potential targets. Owing to their contractile properties, glomerular mesangial cells play a major role in the control of glomerular hemodynamics and influence the ultrafiltration coefficient. Cell cultures provide alternative and fruitful models for study of in vitro toxicology. However, the use of primary human mesangial cell cultures is hampered by their limited survival span and their rapid dedifferentiation during passages. This study presents a human stable immortalized mesangial cell line, designated IP15. Cell characteristics were investigated by the detection of known mesangial markers, as well as their ability to contract in response to angiotensin II. IP15 cells were used to investigate cadmium uptake and morphological changes such as cell contraction and cytoskeleton protein expression. The IC50 cytotoxicity index was obtained with 3.55 μmol/L using neutral red assay for 24 h. After cadmium exposure (1 μmol/L, determined as nonlethal concentration), 0.38 μg Cd/mg protein was internalized by the cells as evaluated by inductively coupled plasma optical emission spectrometry (ICP/OES). Cadmium induced a significant cell surface reduction that correlated with smooth-muscle α-actin disorganization. Thus, the IP15 cell line is a suitable model for study of in vitro cadmium cytotoxicity in mesangial cells and allows sufficient material to be obtained for future studies of the intracellular effects of cadmium exposure.  相似文献   

5.
Transforming growth factor-β (TGF-β) is a key regulator of extracellular matrix (ECM), and may mediate the development of glomerulosclerosis with accumulation of mesangial matrix. Mesangial cells secrete TGF-β in response to common in vitro fibrogenic stimuli. Yet mesangial immunostaining for active TGF-β1 is frequently negative in chronic glomerular disease. TGF-β is rather expressed and/or activated by podocytes in both mesangial and podocyte diseases. Activated TGF-β/Smad signaling by podocytes may induce connective tissue growth factor (CTGF or CCN2) and vascular endothelial growth factor (VEGF) expression. Podocyte CTGF seems to have paracrine effects on mesangial cells to stimulate CTGF expression. CTGF appears to stimulate the fibronectin-matrix assembly via enhanced cell-surface expression of α5β1 integrin in the mesangium of diseased glomeruli. Podocyte VEGF-A overexpression also seems to play a paracrine role on mesangial cells to upregulate VEGF/VEGF receptor systems and to overproduce matrix proteins. Thus, paracrine CTGF and VEGF may contribute to mesangial matrix accumulation in chronic glomerular disease, culminating in the development of glomerulosclerosis. Together, these data bring new mechanistic insights into our understanding of the pathogenic role of TGF-β-induced CTGF and VEGF in mesangial matrix expansion in chronic progressive glomerular disease.  相似文献   

6.
Mesangial cell has several key roles in the control of glomerular function: it participates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitable cell lines have been established yet. We here reported the immortalization of rat kidney glomerular mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The results showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells, are well maintained after transfection. The coculture of transfected mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial cells was suppressed by epithelial cell, but the growth of epithelial cells was enhanced by mesangial cells. Moreover, an enhancing effect on the phagocytosis of mesangial cell was also observed in coculture. Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.  相似文献   

7.
CD151, a member of the tetraspanin family of membrane proteins, is crucially involved in the formation of the glomerular filtration barrier in humans and mice. However, the role of CD151 in podocytes has not been investigated so far. In the present study, we utilized a conditionally immortalized mouse podocyte cell line to characterize CD151 in podocytes and to examine the consequences of manipulating CD151 expression levels. Mouse podocytes endogenously express CD151 as determined by RT-PCR and Western blotting. GFP-CD151 fusion protein localized to the cell membrane, to cell protrusions and cell-cell contacts, colocalizing with actin, β(1)-integrin, zonula occludens-1, and CD9. The expression of GFP-CD151 in cultured podocytes resulted in a marked increase in the presence of thin arborized protrusions (TAPs). TAPs are distinct from filopodia by increased length, protein composition, branched morphology, and slower dynamics. Furthermore, the migration rate of pEGFP-CD151-transfected podocytes was reduced in a wound assay. Fluorescence recovery after photo bleaching measurements revealed a half-time of 3 s for GFP-CD151 consistent with a high mobility of CD151 in the membrane and cytosol. CD151 knockdown in podocytes reduced β(1)-integrin expression and podocyte cell area, indicating diminished adherence and/or spreading. Our results indicate that CD151 importantly modulates podocyte function.  相似文献   

8.
The purpose of this study was to establish and characterize a retinal pericyte cell line from retinal capillaries of transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), and to apply this to the co-culture with a retinal capillary endothelial cell line. The conditionally immortalized rat retinal pericyte cell lines (TR-rPCTs), which express a temperature-sensitive large T-antigen, were obtained from two tsA58 Tg rats. These cell lines had a multicellular nodule morphology and reacted positively with von Kossa staining, a marker of calcification. TR-rPCTs cells expressed mRNA of pericyte markers such as rat intercellular adhesion molecule-1, platelet-derived growth factor-receptor beta, angiopoietin-1, and osteopontin. Western blot analysis indicated that alpha-smooth muscle actin (alpha-SMA) was expressed in TR-rPCT3 and 4 cells. In contrast, alpha-SMA was induced by transforming growth factor-beta1 and its enhancement was reduced by basic fibroblast growth factor in TR-rPCT1 and 2 cells. When TR-rPCT1 cells were cultured with a rat retinal endothelial cell line (TR-iBRB2) in a contact co-culture system, the number of TR-iBRB2 cells were significantly reduced in comparison with that of a single culture of TR-iBRB2 cells, suggesting that physical contact between pericytes and retinal endothelial cells is important for the growth of retinal endothelial cells. In conclusion, conditionally immortalized retinal pericyte cell lines were established from tsA58 Tg rats. These cell lines exhibited the properties of retinal pericytes and can be applied in co-culture systems with a retinal capillary endothelial cell line.  相似文献   

9.
Oxidative injury in glomerular disease may oxidize extracellular matrix proteins which might modulate their interaction with mesangial cells and thereby account for the hypocellularity seen in advanced glomerulosclerosis. In this study we evaluated whether oxidation of extracellular matrix could modulate human mesangial cell apoptosis. Human mesangial cells were seeded onto plates coated with unmodified (control) or oxidized Matrigel, laminin, or type IV collagen. Mesangial cell apoptosis was increased on oxidized Matrigel as well as on oxidized laminin and type IV collagen. Mesangial cells behaved similarly on plates coated with control and oxidized forms of the integrin ligand-containing peptide GRGDSP. Cells on oxidized matrix demonstrated enhanced expression of Bax, increased fragmentation of PARP, and diminished apoptosis in the presence of the interleukin-1 beta converting enzyme inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde. These data suggest that oxidation of extracellular matrix proteins may enhance human mesangial cell apoptosis via a mechanism that appears to involve enhanced expression of Bax and caspase activation. This may account for irreversible mesangial hypocellularity in glomerulosclerosis.  相似文献   

10.

Background

Gas6 is a growth factor that causes proliferation of mesangial cells in the development of glomerulonephritis. Gas6 can bind to three kinds of receptors; Axl, Dtk, and Mer. However, their expression and functions are not entirely clear in the different glomerular cell types. Meanwhile, representative cell cycle regulatory protein p27 has been reported to be expressed in podocytes in normal glomeruli with decreased expression in proliferating glomeruli, which inversely correlated with mesangial proliferation in human IgA nephropathy (IgAN).

Methods

The aim of this study is to clarify Gas6 involvement in the progression of IgAN. Expression of Gas6/Axl/Dtk was examined in 31 biopsy proven IgAN cases. We compared the expression levels with histological severity or clinical data. Moreover, we investigated the expression of Gas6 and its receptors in cultured podocytes.

Results

In 28 of 31 cases, Gas6 was upregulated mainly in podocytes. In the other 3 cases, Gas6 expression was induced in endothelial and mesangial cells, which was similar to animal nephritis models. Among 28 podocyte type cases, the expression level of Gas6 correlated with the mesangial hypercellularity score of IgAN Oxford classification and urine protein excretion. It also inversely correlated with p27 expression in glomeruli. As for the receptors, Axl was mainly expressed in endothelial and mesangial cells, while Dtk was expressed in podocytes. In vitro, Dtk was expressed in cultured murine podocytes, and the expression of p27 was decreased by Gas6 stimulation.

Conclusions

Gas6 was uniquely upregulated in either endothelial/mesangial cells or podocytes in IgAN. The expression pattern can be used as a marker to classify IgAN. Gas6 has a possibility to be involved in not only mesangial proliferation via Axl, but also podocyte injury via Dtk in IgAN.  相似文献   

11.
Adrenomedullin (AM) is postulated to exert organ-protective effects. It is expressed in the renal glomeruli, but its roles in the glomerular podocytes have been poorly elucidated. In the present study, we investigated the expression and regulation of AM in recently established conditionally immortalized mouse podocyte cell line in vitro and podocyte injury model in vivo. The cultured differentiated podocytes expressed AM mRNA and secreted measurable amount of AM. AM secretion from the podocytes was increased by H(2)O(2), hypoxia, puromycin aminonucleoside (PAN), albumin overload, and TNF-alpha. Real-time RT-PCR analysis revealed that AM mRNA expression in the podocytes was enhanced by PAN and TNF-alpha, both of which were suppressed by mitochondrial antioxidants. Furthermore, AM expression was upregulated in the glomerular podocytes of PAN nephrosis rats. These results indicated that AM expression in the podocytes was upregulated by stimuli or condition relevant to podocyte injury, suggesting its potential role in podocyte pathophysiology.  相似文献   

12.
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.  相似文献   

13.
Prostaglandin synthesis by human glomerular cells in culture   总被引:2,自引:0,他引:2  
PG synthesis by cultured human glomerular mesangial and epithelial cells incubated with [1- 14C] arachidonic acid was determined by radioimmunoassay (RIA) after high performance liquid chromatography purification. Both dissociated cells and cell monolayers were studied under basal conditions. PG synthesis by epithelial cells was undetectable. Mesangial cells produced low amounts of PGE2, PGF2 alpha and 6 keto-PGF1 alpha and no TXB2. We also examined the effects of several agents on PG synthesis in these two types of cells scraped away from their flasks using direct RIA. Arachidonic acid produced a slight stimulation only with mesangial cells whereas angiotensin II, cyclic AMP and calcium ionophore were inactive with both cell lines. Homogenization of the cells did not enhance the stimulatory effect of arachidonic acid. Alkalinization of the incubation medium produced an increase of PG production by mesangial cells. These results suggest that two types of human glomerular cells, particularly epithelial cells, possess low cyclooxygenase activity. The low capacity of human mesangial and epithelial cells to produce PG may have consequences for the endocrine control of the glomerular microcirculation in man.  相似文献   

14.
The purpose of this short review is to present the potential of using isolated glomeruli and cultured mesangial cells as two differentin vitro models to assess the glomerular effect of molecules with nephrotoxic properties. The advantage of using isolated renal glomeruli is that they conserve the architecture of this anatomical region of the kidney; moreover, they are free of any vascular, nervous or humoral influences derived from other regions of the kidney. Mesangial cells are perivascular pericytes located within the central portion of the glomerular tuft between capillary loops. Mesangial cells have a variety of functions including synthesis and assembly of the mesangial matrix, endocytosis and processing of plasma macromolecules, and control of glomerular hemodynamics, mainly the ultrafiltration coefficient K f, via mesangial cell contraction or release of vasoactive hormones. Most authors agree that mesangial cells play a major role in glomerular contraction, filtration surface area, and K f regulation. One of the major effects of toxicants on glomerular structures is contraction. We can assess quantitatively the degree of toxicant-induced mesangial cell contraction or glomerular contraction by measuring the changes in planar cell surface area or apparent glomerular cross-sectional area after exposition to the toxicant. Thesein vitro models can also reveal glomerular effects of xenobiotics that are difficult or impossible to observe in vivo. In addition, these studies permit a fundamental examination of the mechanism of action of xenobiotics on glomerular cells, including the possibility that at least a part of their effects are mediated by local mediators released by glomerular cells. We review the effects and the mechanisms of action of several toxicants such as gentamicin, cyclosporin, cisplatin, and cadmium on isolated glomeruli or cultured mesangial cells. As suchin vitro results confirmin vivo renal hemodynamic changes caused by toxicants, we conclude that these models are fruitful tools for the study of renal toxicity. Thesein vitro systems might also serve as a predictive tool in the evaluation of drugs inducing changes in glomerular filtration rate and as a way to propose protective agents against these dramatic hemodynamic effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Glomerular endothelial and mesangial cells may originate from the metanephric mesenchyme. We used the MAb Thy1.1, a mesangial cell marker in the adult rat kidney, and rat endothelial cell markers MAb RECA-1, MAb PECAM-1 (CD31), and MAb Flk-1 as potential markers to characterize the spatial and temporal distribution of mesangial and endothelial cell precursors during nephrogenesis in the rat. At early stages of glomerulogenesis, RECA-1- and Thy1.1-positive cells were detected in the metanephric blastema at 14 days post conception (dpc) embryos and 15 dpc, respectively, with Thy1.1 expression in cells surrounding the ureteric bud. At 17 and 18 dpc, both RECA-1- and Thy1.1-positive cells were found in the cleft of the S-shaped bodies and in the capillary loops of maturing glomeruli. Double staining for BrdU, a marker of proliferation, and for RECA-1 or BrdU and Thy1.1 also localize in the cleft of S-shaped bodies and in glomerular capillary loops at later stages of development. PDGFRbeta co-localizes in cells expressing endothelial or mesangial markers. The data suggest that endothelial and mesangial cell precursors share common markers during the course of glomerulogenesis and that full differentiation of these cells occurs at late stages of glomerular maturation. Thy1.1- and RECA-1-positive cells may be derived from the metanephric blastemal cells at early stages of kidney development. A subpopulation of these Thy1.1- or RECA-1-positive cells may be precursors that can migrate into the cleft of comma and S-shaped bodies and proliferate in situ to form glomerular capillary tufts.  相似文献   

16.
The glomerulus is a complex structure including four cell types, namely mesangial, visceral epithelial, parietal epithelial and endothelial cells. Mesangial cells resemble smooth muscle cells and play a major role in the synthesis of the components of the glomerular basement membrane and in the vasoreactivity of the glomerular tuft. In particular, they express receptors for angiotensin II which mediate mesangial cell contraction, this effect resulting in the decrease of the filtration area. They are also the site of synthesis of a variety of inflammatory agents which are involved in the development of glomerular injury in glomerulonephritis. Visceral epithelial cells, also referred to a podocytes, also participate in the synthesis of the normal constituents of the glomerular basement membrane. They express receptors for atrial natriuretic factor and possess on their surface a number of ectoenzymes. They also, in concert with mesangial cells, release metalloproteases which contribute to the degradation of the extracellular matrix. Parietal epithelial cells have been little studied. They represent the main constituent of the crescents observed in extracapillary proliferative glomerulonephritis. Endothelial cells secrete vasodilatory agents such as nitric oxide and prostacyclin and vasoconstrictor agents such as endothelin which act on the adjacent mesangial cells. New methods of culture of glomerular cells are in progress. Their aim is to keep as long as possible the physiological phenotype of these cells. Another progress is the availability of stable transformed cell lines which represent an abundant source of material for biochemical studies.  相似文献   

17.
Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.  相似文献   

18.
CD2相关蛋白在足细胞分化中的作用   总被引:3,自引:0,他引:3  
Jiang HJ  Chang Y  Zhu ZH  Liu JS  Deng AG  Zhang C 《生理学报》2008,60(1):135-142
本文旨在研究肾脏足细胞的分化特点及CD2相关蛋白(CD2-associated protein,CD2AP)在足细胞分化过程中的作用.用RPMI 1640培养基在33.C许可条件下培养永生化小鼠足细胞系(未分化组),转染针对CD2AP的小分子干扰RNA(smallinterfering RNA,siRNA)后置于37.C非许可条件下培养(转染组),并将非许可条件下未转染组作为对照组.用MTT法检测足细胞的生长速度;用RT-PCR方法检测CD2AP、WTI、synaptopodin和nephrin mRNA表达;用Western blot检测CD2AP、wTl和nephrin蛋白表达;用免疫荧光结合激光共聚焦方法检测CD2AP、nephrin、F-actin和tubulin在分化及未分化足细胞中的分布及其共定位情况.结果显示,CD2AP、WTl和nephrin在分化及未分化足细胞中均可稳定表达,而synaptopodin仅表达于已分化足细胞,在未分化足细胞无表达.在足细胞分化过程中,CD2AP和nephrin的表达上调(P<0.05);CD2AP、tubulin和F-actin在细胞内的分布发生改变,CD2AP与nephrin及F-actin在未分化足细胞中存在共定位关系.转染特异性siRNA下调CD2AP表达,细胞生长速度明显减慢,synaptopodin mRNA表达下调(P<0.05),细胞分化迟滞.结果表明,足细胞分化过程中伴随细胞骨架的重新分布和细胞形态的改变;CD2AP可能作为足细胞裂孔隔膜分子与细胞骨架的连接蛋白,在足细胞分化过程中发挥重要作用.  相似文献   

19.
Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes.  相似文献   

20.
MicroRNAs (miRs) are small non‐coding RNAs that regulate gene expression in physiological processes as well as in diseases. Currently miRs are already used to find novel mechanisms involved in diseases and in the future, they might serve as diagnostic markers. To identify miRs that play a role in glomerular diseases urinary miR‐screenings are a frequently used tool. However, miRs that are detected in the urine might simply be filtered from the blood stream and could have been produced anywhere in the body, so they might be completely unrelated to the diseases. We performed a combined miR‐screening in pooled urine samples from patients with different glomerular diseases as well as in cultured human podocytes, human mesangial cells, human glomerular endothelial cells and human tubular cells. The miR‐screening in renal cells was done in untreated conditions and after stimulation with TGF‐β. A merge of the detected regulated miRs led us to identify disease‐specific, cell type‐specific and cell stress‐induced miRs. Most miRs were down‐regulated following the stimulation with TGF‐β in all cell types. Up‐regulation of miRs after TGF‐β was cell type‐specific for most miRs. Furthermore, urinary miRs from patients with different glomerular diseases could be assigned to the different renal cell types. Most miRs were specifically regulated in one disease. Only miR‐155 was up‐regulated in all disease urines compared to control and therefore seems to be rather unspecific. In conclusion, a combined urinary and cell miR‐screening can improve the interpretation of screening results. These data are useful to identify novel miRs potentially involved in glomerular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号