首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Interferon (IFN)-λ1 [also known as interleukin (IL)-29] belongs to the recently discovered group of type III IFNs. All type III IFNs initiate signaling processes through formation of specific heterodimeric receptor complexes consisting of IFN-λR1 and IL-10R2. We have determined the structure of human IFN-λ1 complexed with human IFN-λR1, a receptor unique to type III IFNs. The overall structure of IFN-λ1 is topologically similar to the structure of IL-10 and other members of the IL-10 family of cytokines. IFN-λR1 consists of two distinct domains having fibronectin type III topology. The ligand-receptor interface includes helix A, loop AB, and helix F on the IFN site, as well as loops primarily from the N-terminal domain and inter-domain hinge region of IFN-λR1. Composition and architecture of the interface that includes only a few direct hydrogen bonds support an idea that long-range ionic interactions between ligand and receptor govern the process of initial recognition of the molecules while hydrophobic interactions finalize it.  相似文献   

2.
杨祎  侯炜 《生命科学》2011,(8):749-752
干扰素(IFN)是抗病毒感染的第一道防线,Ⅰ型和Ⅱ型干扰素不仅可抑制病毒,而且还能参与天然免疫反应和获得性免疫反应。最近干扰素家族增添一位新成员:Ⅲ型干扰素,即IFN-λ,因其具有类似干扰素的抗病毒活性且能诱导干扰素相关基因的表达而命名。IFN-λ受体与Ⅰ型干扰素的受体不同,但具有与Ⅰ型干扰素类似的诱导表达方式和信号转导通路,并能激活一系列相似的干扰素刺激基因。就IFN-λ家族及其受体、基因表达和信号转导机制、抗病毒作用等进行综述。  相似文献   

3.
The interferon system of teleost fish   总被引:4,自引:0,他引:4  
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.  相似文献   

4.
Interferons (IFNs) are the first line of defense against viral infections in vertebrates. Type III interferon (IFN-λ) is recognized for its key role in innate immunity of tissues of epithelial origin. Here we describe the identification of the Pekin duck IFN-λ ortholog (duIFN-λ). The predicted duIFN-λ protein has an amino acid identity of 63%, 38%, 37% and 33% with chicken IFN-λ and human IFN-λ3, IFN-λ2 and IFN-λ1, respectively. The duck genome contains a single IFN-λ gene that is comprised of five exons and four introns. Recombinant duIFN-λ up-regulated OASL and Mx-1 mRNA in primary duck hepatocytes. Our observations suggest evolutionary conservation of genomic organization and structural features implicated in receptor binding and antiviral activity. The identification and expression of duIFN-λ will facilitate further study of the role of type III IFN in antiviral defense and inflammatory responses of the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health.  相似文献   

5.
6.
7.
Previously a cDNA encoding a putative interferon gene, designated CF IFN-1, was identified from a catfish EST library. However, its constitutive expression, absence of a signal peptide, and apparently low level of biological activity suggested that this cDNA likely encoded an expressed pseudogene. Since Southern blot analysis suggested the presence of two to three IFN genes, additional cDNAs were generated from catfish fibroblast and lymphoid cell lines using primers designed to conserved regions of zebrafish and catfish interferon. Using this approach, three novel CF IFN genes, two of which likely encode functional interferon molecules, were identified. At the amino acid level, similarity among CF IFNs ranged from 71% to 82%, whereas similarity to other fish IFNs ranged from 15% to 35%. Although CF IFN-3, like CF IFN-1, lacks a signal peptide, CF IFN-2 and -4 appear to encode full-length, signal sequence-bearing genes. Consistent with their putative identification as functional genes, CF IFN-2 and -4 were not expressed in unstimulated cell lines, and CF IFN-2 was rapidly upregulated in CCO cells in response to virus infection or treatment with dsRNA. Moreover, as with salmon, fugu, and zebrafish interferon genes, CF IFN-1 contained four introns whose locations were conserved not only with respect to other fish IFNs, but also with respect to mammalian IFN-lambda. While it is likely that CF IFNs represent Type I IFNs, several characteristics preclude assigning these cytokines to any particular subfamily.  相似文献   

8.
Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.  相似文献   

9.
Kang D  Ryoo S  Chung B  Lee J  Park S  Han J  Jeong S  Rho G  Hong J  Bae S  Kang T  Kim S  Kim S 《Cytokine》2012,59(2):273-279
Interferons (IFNs) are commonly grouped into type I and type II IFN. Type I IFNs are known as antiviral IFNs including IFN-α, IFN-β, and IFN-ω whereas type II IFN is referred to immune IFN and IFN-γ is only member of the type II IFN. Type I IFNs are induced by virus invading however type II IFN is produced by mitogenic or antigenic stimuli. IFN-τ was first identified in ruminant ungulates as a pregnancy recognition hormone, trophoblastin. IFN-τ constitutes a new class of type I IFN, which possesses the common features of type I IFN, such as the ability to prevent viral infection and to limit cell proliferation. In addition, IFN-τ is unique in that it is induced by pregnancy unlike other type I IFNs. We cloned Bos taurus (B. T.) Coreanae IFN-τ from peripheral blood mononuclear cells. The amino acid sequence of B. T. Coreanae IFN-τ shares only 90.3% identity with that of Holstein dairy cow. Recombinant B. T. Coreanae and Holstein IFN-τ proteins were expressed in Escherichia coli and the antiviral activity of IFN-τ proteins were examined. Both recombinant proteins were active and protected human WISH and bovine MDBK cells from the cytopathic effect of vesicular stomatitis virus. The recombinant IFN-τ protein of B. T. Coreanae and Holstein properly induced the expression of antiviral genes including 2',5'-oligoadenylate synthetase (OAS) and Mx GTPase 1 (Mx-1).  相似文献   

10.
11.
Interferons (IFNs) are the first line of defense against viral infections. Although type I and II IFNs have proven effective to inhibit foot-and-mouth disease virus (FMDV) replication in swine, a similar approach had only limited efficacy in cattle. Recently, a new family of IFNs, type III IFN or IFN-λ, has been identified in human, mouse, chicken, and swine. We have identified bovine IFN-λ3 (boIFN-λ3), also known as interleukin 28B (IL-28B), and demonstrated that expression of this molecule using a recombinant replication-defective human adenovirus type 5 (Ad5) vector, Ad5-boIFN-λ3, exhibited antiviral activity against FMDV in bovine cell culture. Furthermore, inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and upregulation of IFN-stimulated gene expression in the upper respiratory airways and skin. In the present study, we demonstrated that disease could be delayed for at least 6 days when cattle were inoculated with Ad5-boIFN-λ3 and challenged 24 h later by intradermolingual inoculation with FMDV. Furthermore, the delay in the appearance of disease was significantly prolonged when treated cattle were challenged by aerosolization of FMDV, using a method that resembles the natural route of infection. No clinical signs of FMD, viremia, or viral shedding in nasal swabs was found in the Ad5-boIFN-λ3-treated animals for at least 9 days postchallenge. Our results indicate that boIFN-λ3 plays a critical role in the innate immune response of cattle against FMDV. To this end, this work represents the most successful biotherapeutic strategy so far tested to control FMDV in cattle.  相似文献   

12.
Interferons (IFNs) are cytokines that are important for immune responses, particularly to intracellular pathogens. They are divided into two structurally and functionally distinct types that interact with different cell-surface receptors. Classically, type I IFNs are potent antiviral immunoregulators, whereas the type II IFN enhances antibacterial immunity. However, as outlined here, type I IFNs are also produced in response to infection with other pathogens, and an increasing body of work shows that type I IFNs have an important role in the host response to bacterial infection. Strikingly, their activity can be either favourable or detrimental, and can influence various immune effector mechanisms.  相似文献   

13.
14.
Type I interferons (IFN) comprise a family of cytokines that signal through a common cellular receptor to induce a plethora of genes with antiviral and other activities. Recombinant IFNs are used for the treatment of hepatitis C virus infection, multiple sclerosis, and certain malignancies. The capability of type I IFN to suppress virus replication and resultant cytopathic effects is frequently used to measure their bioactivity. However, these assays are time-consuming and require appropriate biosafety containment. In this study, an improved IFN assay is presented which is based on a recombinant vesicular stomatitis virus (VSV) replicon encoding two reporter proteins, firefly luciferase and green fluorescent protein. The vector lacks the essential envelope glycoprotein (G) gene of VSV and is propagated on a G protein-expressing transgenic cell line. Several mammalian and avian cells turned out to be susceptible to infection with the complemented replicon particles. Infected cells readily expressed the reporter proteins at high levels five hours post infection. When human fibroblasts were treated with serial dilutions of human IFN-β prior to infection, reporter expression was accordingly suppressed. This method was more sensitive and faster than a classical IFN bioassay based on VSV cytopathic effects. In addition, the antiviral activity of human IFN-λ (interleukin-29), a type III IFN, was determined on Calu-3 cells. Both IFN-β and IFN-λ were acid-stable, but only IFN-β was resistant to alkaline treatment. The antiviral activities of canine, porcine, and avian type I IFN were analysed with cell lines derived from the corresponding species. This safe bioassay will be useful for the rapid and sensitive quantification of multi-species type I IFN and potentially other antiviral cytokines.  相似文献   

15.
Lu J  Yi L  Zhao J  Yu J  Chen Y  Lin MC  Kung HF  He ML 《Journal of virology》2012,86(7):3767-3776
The recent outbreak of enterovirus 71 (EV71) infected millions of children and caused over 1,000 deaths. To date, neither an effective vaccine nor antiviral treatment is available for EV71 infection. Interferons (IFNs) have been successfully applied to treat patients with hepatitis B and C viral infections for decades but have failed to treat EV71 infections. Here, we provide the evidence that EV71 antagonizes type I IFN signaling by reducing the level of interferon receptor 1 (IFNAR1). We show that the host cells could sense EV71 infection and stimulate IFN-β production. However, the induction of downstream IFN-stimulated genes is inhibited by EV71. Also, only a slight interferon response and antiviral effects could be detected in cells treated with recombinant type I IFNs after EV71 infection. Further studies reveal that EV71 blocks the IFN-mediated phosphorylation of STAT1, STAT2, Jak1, and Tyk2 by reducing IFNAR1. Finally, we identified the 2A protease encoded by EV71 as an antagonist of IFNs and show that the protease activity is required for reducing IFNAR1 levels. Taken together, our study for the first time uncovers a mechanism used by EV71 to antagonize type I IFN signaling and provides new targets for future antiviral strategies.  相似文献   

16.
干扰素(interferons,IFN)是一类重要的细胞因子,具有多种抗病毒和免疫调节等作用。根据其结构特点、受体、细胞来源和生物学活性,可分为Ⅰ型、Ⅱ型和Ⅲ型。IFN通过与其特异性受体结合,通过一个复杂且部分重叠的基因转录过程来发挥作用,其核苷酸多态性和基因突变可影响IFN反应及对病毒感染的敏感性。几乎所有的病毒都有抵抗IFN抗病毒活性的机制和效力,包括直接影响IFN产生和影响下游效应因子。不同型别IFN在行使抗病毒或免疫调节功能时具有拮抗或协同作用。本文就IFN基因变异、病毒抗IFN策略及IFN之间的协同/拮抗作用进行综述,以期能更好地理解IFN的抗病毒作用。  相似文献   

17.
Activated macrophages play a central role in controlling inflammatory responses to infection and are tightly regulated to rapidly mount responses to infectious challenge. Type I interferon (alpha/beta interferon [IFN-α/β]) and type II interferon (IFN-γ) play a crucial role in activating macrophages and subsequently restricting viral infections. Both types of IFNs signal through related but distinct signaling pathways, inducing a vast number of interferon-stimulated genes that are overlapping but distinguishable. The exact mechanism by which IFNs, particularly IFN-γ, inhibit DNA viruses such as cytomegalovirus (CMV) is still not fully understood. Here, we investigate the antiviral state developed in macrophages upon reversible inhibition of murine CMV by IFN-γ. On the basis of molecular profiling of the reversible inhibition, we identify a significant contribution of a restricted type I IFN subnetwork linked with IFN-γ activation. Genetic knockout of the type I-signaling pathway, in the context of IFN-γ stimulation, revealed an essential requirement for a primed type I-signaling process in developing a full refractory state in macrophages. A minimal transient induction of IFN-β upon macrophage activation with IFN-γ is also detectable. In dose and kinetic viral replication inhibition experiments with IFN-γ, the establishment of an antiviral effect is demonstrated to occur within the first hours of infection. We show that the inhibitory mechanisms at these very early times involve a blockade of the viral major immediate-early promoter activity. Altogether our results show that a primed type I IFN subnetwork contributes to an immediate-early antiviral state induced by type II IFN activation of macrophages, with a potential further amplification loop contributed by transient induction of IFN-β.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号