首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To determine if proteins RNase III and rho, both of which can determine the 3' ends of RNA molecules, can complement each other, double mutants defective in these two factors were constructed. In all cases (four rho mutations tested) the double mutants were viable at lower temperatures, but were unable to grow at higher temperatures at which both of the parental strains grew. Genetic analyses suggested that the combinations of the rnc rho (RNase III-Rho-) mutations was necessary and probably sufficient to confer temperature sensitivity on carrier strains. Physiological studies showed that synthesis and maturation of rRNA, which is greatly affected by RNase III, as well as other RNAs, was indistinguishable in rnc rho strains as compared to rnc rho+ strains, thus suggesting that RNase III and rho do not complement one another in determining the 3' ends of RNA molecules. In rnc rho strains, however, the newly synthesized rRNA failed to accumulate. Thus, decay of rRNA could be the reason for the temperature sensitivity of the double mutant strains. These experiments suggest that RNase III and rho can both protect rRNA from degradation by cellular ribonucleases. They also point to the possibility that the nucleotide sequences involved in the determination of the 3' ends of RNA molecules by these two factors are not identical.  相似文献   

3.
4.
5.
Biological processes are not exempt from errors and RNA production is not an exception to this rule. Errors can arise stochastically or be genetically fixed and systematically appear in the biochemical or cellular phenotype. In any case, quality control mechanisms are essential to minimize the potentially toxic effects of faulty RNA production or processing. Although many RNA molecules express their functional potential in the cytoplasm, as messengers, adaptors or operators of gene expression pathways, a large share of quality control occurs in the nucleus. This is likely because the early timing of occurrence and the subcellular partition make the control more efficient, at least as long as the defects can be detected ahead of the cytoplasmic phase of the RNA life cycle. One crucial point in discussing RNA quality control resides in its definition. A stringent take would imply the existence of specific mechanisms to recognize the error and the consequent repair or elimination of the faulty molecule. One example in the RNA field could be the recognition of a premature stop codon by the nonsense-mediated decay pathway, discussed elsewhere in this issue. A more relaxed view posits that the thermodynamic or kinetic aftermath of a mistake (e.g. a blockage or a delay in processing) by itself constitutes the recognition event, which triggers downstream quality control. Because whether inappropriate molecules are specifically recognized remains unclear in many cases, we will adopt the more relaxed definition of RNA quality control. RNA repair remains episodic and the degradative elimination of crippled molecules appears to be the rule. Therefore we will briefly describe the actors of RNA degradation in the nucleus. Detailed analyses of the mechanism of action of these enzymes can be found in several excellent and recent reviews, including in this issue. Finally, we will restrict our analysis to the yeast model, which is used in the majority of RNA quality control studies, but examples exist in the literature indicating that many of the principles of RNA quality control described in yeast also apply to other eukaryotes. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

6.
7.
8.
9.
细胞RNA的降解机制不仅在基因表达调节方面具有重要作用,而且也是一种重要的病毒防御机制. 作为一种必须在细胞内增殖的微生物,病毒已经进化出了多种机制,以保护它们的RNA免被宿主细胞降解,如病毒RNA模拟宿主细胞mRNA的结构、形成磷脂包膜、形成局部二级结构、结合自己或宿主细胞编码的蛋白质和编码核酸酶增强宿主细胞mRNA降解等. 本文主要论述了病毒RNA逃避宿主细胞降解的方式,并对其应用前景进行了展望,尤其是在研发抗病毒药物方面的应用前景.  相似文献   

10.
11.
RNase E and RNase G are homologous endonucleases that play important roles in RNA processing and decay in Escherichia coli and related bacterial species. Rapid mRNA degradation is facilitated by the preference of both enzymes for decay intermediates whose 5′ end is monophosphorylated. In this report we identify key characteristics of RNA that influence the rate of 5′-monophosphate-assisted cleavage by these two ribonucleases. In vitro, both require at least two and prefer three or more unpaired 5′-terminal nucleotides for such cleavage; however, RNase G is impeded more than RNase E when fewer than four unpaired nucleotides are present at the 5′ end. Each can tolerate any unpaired nucleotide (A, G, C, or U) at either of the first two positions, with only modest biases. The optimal spacing between the 5′ end and the scissile phosphate appears to be eight nucleotides for RNase E but only six for RNase G. 5′-Monophosphate-assisted cleavage also occurs, albeit more slowly, when that spacing is greater or at most one nucleotide shorter than the optimum, but there is no simple inverse relationship between increased spacing and the rate of cleavage. These properties are also manifested during 5′-end-dependent mRNA degradation in E. coli.  相似文献   

12.
13.
14.
15.
RNA metabolism is a critical but frequently overlooked control element affecting virtually every cellular process in bacteria. RNA processing and degradation is mediated by a suite of ribonucleases having distinct cleavage and substrate specificity. Here, we probe the role of two ribonucleases (RNase III and RNase J) in the emerging model system Streptomyces venezuelae. We show that each enzyme makes a unique contribution to the growth and development of S. venezuelae and further affects the secondary metabolism and antibiotic production of this bacterium. We demonstrate a connection between the action of these ribonucleases and translation, with both enzymes being required for the formation of functional ribosomes. RNase III mutants in particular fail to properly process 23S rRNA, form fewer 70S ribosomes, and show reduced translational processivity. The loss of either RNase III or RNase J additionally led to the appearance of a new ribosomal species (the 100S ribosome dimer) during exponential growth and dramatically sensitized these mutants to a range of antibiotics.  相似文献   

16.
It is becoming increasingly evident that the RNA degradome is a crucial component of the total cellular RNA pool. Here, we present an analysis of the medium-sized RNAs (midi RNAs) that form in Arabidopsis thaliana. Our analyses revealed that the midi RNA fraction contained mostly 20–70-nt-long fragments derived from various RNA species, including tRNA, rRNA, mRNA and snRNA. The majority of these fragments could be classified as stable RNA degradation intermediates (RNA degradants). Using two dimensional polyacrylamide gel electrophoresis, we demonstrated that high copy number RNA (hcn RNA) degradants appear in plant cells not only during stress, as it was earlier suggested. They are continuously produced also under physiological conditions. The data collected indicated that the accumulation pattern of the hcn RNA degradants is organ-specific and can be affected by various endogenous and exogenous factors. In addition, we demonstrated that selected degradants efficiently inhibit translation in vitro. Thus, the results of our studies suggest that hcn RNA degradants are likely to be involved in the regulation of gene expression in plants.  相似文献   

17.
R Parker 《Genetics》2012,191(3):671-702
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.  相似文献   

18.
19.
Mechanisms of mRNA decay in bacteria: a perspective   总被引:100,自引:0,他引:100  
J G Belasco  C F Higgins 《Gene》1988,72(1-2):15-23
  相似文献   

20.
The multifunctional ribonuclease RNase E and the 3'-exonuclease polynucleotide phosphorylase (PNPase) are major components of an Escherichia coli ribonucleolytic "machine" that has been termed the RNA degradosome. Previous work has shown that poly(A) additions to the 3' ends of RNA substrates affect RNA degradation by both of these enzymes. To better understand the mechanism(s) by which poly(A) tails can modulate ribonuclease action, we used selective binding in 1 m salt to identify E. coli proteins that interact at high affinity with poly(A) tracts. We report here that CspE, a member of a family of RNA-binding "cold shock" proteins, and S1, an essential component of the 30 S ribosomal subunit, are poly(A)-binding proteins that interact functionally and physically, respectively, with degradosome ribonucleases. We show that purified CspE impedes poly(A)-mediated 3' to 5' exonucleolytic decay by PNPase by interfering with its digestion through the poly(A) tail and also inhibits both internal cleavage and poly(A) tail removal by RNase E. The ribosomal protein S1, which is known to interact with sequences at the 5' ends of mRNA molecules during the initiation of translation, can bind to both RNase E and PNPase, but in contrast to CspE, did not affect the ribonucleolytic actions of these enzymes. Our findings raise the prospect that E. coli proteins that bind to poly(A) tails may link the functions of degradosomes and ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号