首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.  相似文献   

2.
Jang B  Han S 《Biochimie》2006,88(1):53-58
Nitration of tyrosine residues is taken as evidence for intracellular formation of peroxynitrite. Cytochrome c (cyt c) can be nitrated by peroxynitrite and nitrated cyt c has been observed in cells and tissues under stress conditions. Here we studied the biochemical properties of nitrated cyt c in order to understand its potential roles in nitrative stress. Nitration of cyt c resulted in disruption of the heme-methionine bond and rapid binding to cyanide. Equilibrium unfolding by guanidine hydrochloride showed that cyt c was slightly destabilized upon nitration but the unfolding transition of nitrated cyt c was highly cooperative indicating that the overall folding was largely preserved. Nitrated cyt c could not be reduced by superoxide and did not support electron transfer between ascorbate and cyt c oxidase. Nitration of cyt c resulted in a tremendous increase in peroxidase activity so that nitrated cyt c rapidly oxidized dihydrodichlorofluorescein even in the presence of a high concentration of glutathione. Enhanced peroxidase activity of nitrated cyt c was responsible for H2O2-induced oxidation of phospholipid membranes and H2O2/NO2--mediated nitration of other proteins. These results suggest that nitration of cyt c by peroxynitrite may exacerbate oxidative damage to mitochondrial proteins and membranes.  相似文献   

3.
Oxidative stress caused by glutathione depletion after prolonged exposure to extracellular glutamate leads to a form of neuronal cell death that exhibits morphologically mixed features of both apoptosis and necrosis. However, specific downstream executioners involved in this form of cell death have yet to be identified. We report here that glutamate exposure does not activate caspase-3 in the HT22 neuronal cell line. Furthermore, no cytoprotection was achieved with either the pan-caspase inhibitor Z-VAD-fmk or the caspase-3-specific inhibitor DEVD-CHO. In contrast, inhibition of the proteasome by lactacystin protected both HT22 cells and rat primary neuronal cells against cell lysis. In parallel, oxidatively altered and ubiquitinated proteins accumulated in the mitochondrial fraction of cells after proteasome inhibition. These findings suggest that caspases can be decoupled from oxidative stress under some conditions, and implicate the ubiquitin/proteasome pathway in neuronal cell death caused by oxidative glutamate toxicity.  相似文献   

4.
Nitration of tyrosine residues has been shown to be an important oxidative modification in proteins and has been suggested to play a role in several diseases such as atherosclerosis, asthma, lung and neurodegenerative diseases. Detection of nitrated proteins has been mainly based on the use of nitrotyrosine‐specific antibodies. In contrast, only a small number of nitration sites in proteins have been unequivocally identified by MS. We have used a monoclonal 3‐NT‐specific antibody, and have synthesized a series of tyrosine‐nitrated peptides of prostacyclin synthase (PCS) in which a single specific nitration site at Tyr‐430 had been previously identified upon reaction with peroxynitrite 17 . The determination of antibody‐binding affinity and specificity of PCS peptides nitrated at different tyrosine residues (Tyr‐430, Tyr‐421, Tyr‐83) and sequence mutations around the nitration sites provided the identification of an epitope motif containing positively charged amino acids (Lys and/or Arg) N‐terminal to the nitration site. The highest affinity to the anti‐3NT‐antibody was found for the PCS peptide comprising the Tyr‐430 nitration site with a KD of 60 nM determined for the peptide, PCS(424‐436‐Tyr‐430NO2); in contrast, PCS peptides nitrated at Tyr‐421 and Tyr‐83 had substantially lower affinity. ELISA, SAW bioaffinity, proteolytic digestion of antibody‐bound peptides and affinity‐MS analysis revealed highest affinity to the antibody for tyrosine‐nitrated peptides that contained positively charged amino acids in the N‐terminal sequence to the nitration site. Remarkably, similar N‐terminal sequences of tyrosine‐nitration sites have been recently identified in nitrated physiological proteins, such as eosinophil peroxidase and eosinophil‐cationic protein. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Webster RP  Macha S  Brockman D  Myatt L 《Proteomics》2006,6(17):4838-4844
Protein tyrosine nitration is a post-translational modification occurring under conditions of oxidative stress in a number of diseases. The causative agent of tyrosine nitration is the potent prooxidant peroxynitrite that results from the interaction of nitric oxide and superoxide. We have previously demonstrated existence of nitrotyrosine in placenta from pregnancies complicated by preeclampsia, which suggested the possibility of the existence of nitrated proteins. Nitration of various proteins has been demonstrated to more commonly result in loss of protein function. Potential nitration of p38 MAPK, a critical signaling molecule has been suggested and also tentatively identified in certain in vivo systems. In this study we demonstrate for the first time nitration of recombinant p38 MAPK in vitro and an associated loss of its catalytic activity. LC-MS data identified tyrosine residues Y132, Y245 and Y258 to be nitrated. Nitration of these specific residues was deduced from the 45.0-Da change in mass that these residues exhibited that was consistent with the loss of a proton and addition of the nitro group.  相似文献   

6.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

7.
Glutamate-induced excitotoxicity and oxidative stress is a major causative factor in neuronal cell death in acute brain injuries and chronic neurodegenerative diseases. The prevention of oxidative stress is a potential therapeutic strategy. Therefore, in the present study, we aimed to examine a potential therapeutic agent and its protective mechanism against glutamate-mediated cell death. We first found that chebulinic acid isolated from extracts of the fruit of Terminalia chebula prevented glutamate-induced HT22 cell death. Chebulinic acid significantly reduced intracellular reactive oxygen species (ROS) production and Ca2+ influx induced by glutamate. We further demonstrated that chebulinic acid significantly decreased the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38, as well as inhibiting pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 protein expression. Moreover, we demonstrated that chebulinic acid significantly reduced the apoptosis induced by glutamate in HT22 cells. In conclusion, our results in this study suggest that chebulinic acid is a potent protectant against glutamate-induced neuronal cell death via inhibiting ROS production, Ca2+ influx, and phosphorylation of MAPKs, as well as reducing the ratio of Bax to Bcl-2, which contribute to oxidative stress-mediated neuronal cell death.  相似文献   

8.
9.
Aslan M  Dogan S 《Journal of Proteomics》2011,74(11):2274-2288
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.  相似文献   

10.
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously, we found that neuroprotective effects of geldanamycin, a benzoquinone ansamycin, in HT22 cells were associated with a down-regulation of c-Raf-1, an upstream activator of the extracellular signal-regulated protein kinases (ERKs). ERK activation, although often attributed strictly to neuronal cell survival and proliferation, can also be associated with neuronal cell death that occurs in response to specific insults. In this report we show that delayed and persistent activation of ERKs is associated with glutamate-induced oxidative toxicity in HT22 cells and immature primary cortical neuron cultures. Furthermore, we find that U0126, a specific inhibitor of the ERK-activating kinase, MEK-1/2, protects both HT22 cells and immature primary cortical neuron cultures from glutamate toxicity. Glutamate-induced ERK activation requires the production of specific arachidonic acid metabolites and appears to be downstream of a burst of reactive oxygen species (ROS) accumulation characteristic of oxidative stress in HT22 cells. However, inhibition of ERK activation reduces glutamate-induced intracellular Ca(2+) accumulation. We hypothesize that the precise kinetics and duration of ERK activation may determine whether downstream targets are mobilized to enhance neuronal cell survival or ensure cellular demise.  相似文献   

11.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress, where an excess of extracellular glutamate inhibits import of cystine, a building block of the antioxidant glutathione. The subsequent decrease in glutathione then leads to the accumulation of reactive oxygen species (ROS) and programmed cell death. We used pharmacological compounds known to interact with heterotrimeric G-protein signalling and studied their effects on cell survival, morphology, and intracellular events that ultimately lead to cell death. Cholera toxin and phorbol esters were most effective and prevented cell death through independent pathways. Treating HT22 cells with cholera toxin attenuated the glutamate-induced accumulation of ROS and calcium influx. This was, at least in part, caused by an increase in glutathione due to improved uptake of cystine mediated by the induction of the glutamate/cystine-antiporter subunit xCT or, additionally, by the up-regulation of the antiapoptotic protein Bcl-2. Gs activation also protected HT22 cells from hydrogen peroxide or inhibition of glutathione synthesis by buthionine sulfoximine, and immature cortical neurones from oxidative glutamate toxicity. Thus, this pathway might be more generally implicated in protection from neuronal death by oxidative stress.  相似文献   

12.
Spectrophotometric titration of Formosan cobra cardiotoxin showed that two of the three tyrosyl residues were titrated freely with a normal apparent pKa of 9.6 whereas the remaining one ionized at pH above 11.0. Nitration of cardiotoxin in Tris . HCl buffer with tetranitromethane resulted in the selective nitration of tyrosine 11 and tyrosine 22. It also revealed that tyrosine 51 was the abnormal one in the spectrophotometric titration. Complete nitration occurred in the presence of 6.0 M guanidine hydrochloride. Compared with the conformation of native cardiotoxin, the peptide conformation of the partially nitrated cardiotoxin did not change significantly but the conformation of the completely nitrated cardiotoxin changed remarkably. The biological activity of cardiotoxin was indeed affected by nitration, but the immunological activity was nearly intact even when all the tyrosine residues were nitrated.  相似文献   

13.
Protein tyrosine nitration is an important post-translational modification mediated by nitric oxide (NO) associated oxidative stress, occurring in a variety of neurodegenerative diseases. In our previous study, an elevated level of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein was observed in different brain regions of acute methamphetamine (METH) treated rats, indicating the possibility of an enhanced expression of protein nitration that is mediated by excess NO through the DDAH1/ADMA (Asymmetric Dimethylated l-arginine)/NOS (Nitric Oxide Synthase) pathway. In the present study, proteomic methods, including stable isotope labeling with amino acids in cell culture (SILAC) and two dimensional electrophoresis, were used to determine the relationship between protein nitration and METH induced neurotoxicity in acute METH treated rats and PC12 cells. We found that acute METH administration evokes a positive activation of DDAH1/ADMA/NOS pathway and results in an over-production of NO in different brain regions of rat and PC12 cells, whereas the whole signaling could be repressed by DDAH1 inhibitor Nω-(2-methoxyethyl)-arginine (l-257). In addition, enhanced expressions of 3 nitroproteins were identified in rat striatum and increased levels of 27 nitroproteins were observed in PC12 cells. These nitrated proteins are key factors for Cdk5 activation, cytoskeletal structure, ribosomes function, etc. l-257 also displayed significant protective effects against METH-induced protein nitration, apoptosis and cell death. The overall results illustrate that protein nitration plays a significant role in the acute METH induced neurotoxicity via the activation of DDAH1/ADMA/NOS pathway.  相似文献   

14.
Nitration of tyrosine residues has been observed during various acute and chronic inflammatory diseases. However, the mechanism of tyrosine nitration and the nature of the proteins that become tyrosine nitrated during inflammation remain unclear. Here we show that eosinophils but not other cell types including neutrophils contain nitrotyrosine-positive proteins in specific granules. Furthermore, we demonstrate that the human eosinophil toxins, eosinophil peroxidase (EPO), major basic protein, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), and the respective murine toxins, are post-translationally modified by nitration at tyrosine residues during cell maturation. High resolution affinity-mass spectrometry identified specific single nitration sites at Tyr349 in EPO and Tyr33 in both ECP and EDN. ECP and EDN crystal structures revealed and EPO structure modeling suggested that the nitrated tyrosine residues in the toxins are surface exposed. Studies in EPO(-/-), gp91phox(-/-), and NOS(-/-) mice revealed that tyrosine nitration of these toxins is mediated by EPO in the presence of hydrogen peroxide and minute amounts of NOx. Tyrosine nitration of eosinophil granule toxins occurs during maturation of eosinophils, independent of inflammation. These results provide evidence that post-translational tyrosine nitration is unique to eosinophils.  相似文献   

15.
Oxidative stress‐induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat‐Atox1 and examined the roles of Tat‐Atox1 in oxidative stress‐induced hippocampal HT‐22 cell death and an ischaemic injury animal model. Tat‐Atox1 effectively transduced into HT‐22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)‐induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat‐Atox1 regulated cellular survival signalling such as p53, Bad/Bcl‐2, Akt and mitogen‐activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat‐Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat‐Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat‐Atox1 protects against oxidative stress‐induced HT‐22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat‐Atox1 has potential as a therapeutic agent for the treatment of oxidative stress‐induced ischaemic damage.  相似文献   

16.
Glutamate induces cell death by upsetting the cellular redox homeostasis, termed oxidative glutamate toxicity, in a mouse hippocampal cell line, HT22. Extracellular signal-regulated kinases (ERK) 1/2 are known key players in this process. Here we characterized the roles of both MAP kinases and cell cycle regulators in mediating oxidative glutamate toxicity and the neuroprotective mechanisms of curcumin in HT22 cells. c-Jun N-terminal kinase (JNK) and p38 kinase were activated during the glutamate-induced HT22 cell death, but at a later stage than ERK activation. Treatment with a JNK inhibitor, SP600125, or a p38 kinase inhibitor, SB203580, partly attenuated this cell death. Curcumin, a natural inhibitor of JNK signaling, protected the HT22 cells from glutamate-induced death at nanomolar concentrations more efficiently than SP600125. These doses of curcumin affected neither the level of intracellular glutathione nor the level of reactive oxygen species, but inactivated JNK and p38 significantly. Moreover, curcumin markedly upregulated a cell-cycle inhibitory protein, p21cip1, and downregulated cyclin D1 levels, which might help the cell death prevention. Our results suggest that curcumin has a neuroprotective effect against oxidative glutamate toxicity by inhibiting MAP kinase signaling and influencing cell-cycle regulation.  相似文献   

17.
The effect of tyrosine nitration on the physicochemical properties and reactivity of human respiratory cytochrome c has been extensively analyzed. A set of mutants, each bearing only one tyrosine out of the five present in the wild-type molecule, has been constructed in order to study the effect of each tyrosine nitration on the properties of the whole protein. Replacement of tyrosines by phenylalanines does not promote significant changes in the properties of the cytochrome. Nitration of wild-type cytochrome c promotes a drastic decrease (ca. 350 mV) in the midpoint redox potential, probably induced by nitration of both tyrosines 48 and 67. Nitration also promotes a significant decrease in the intrinsic reactivity of all the wild-type and mutant proteins. Nitration of mutant cytochromes and, in particular, of the wild-type protein significantly decreases their reactivity with cytochrome c oxidase, thereby suggesting that this alteration is due to an accumulative effect of different nitrations. The reactivity of mutants bearing tyrosine 67 and, to a lesser extent, tyrosine 74 is more affected by nitration, indicating that the change in reactivity of nitrated wild-type cytochrome c is mainly due to nitration of these tyrosine residues. Moreover, nitration of wild-type cytochrome c induces a significant loss in its ability to activate caspases because of the additive effect of nitration of several tyrosine groups, as inferred from the behavior of monotyrosine mutants.  相似文献   

18.
Nitration of tyrosine residues of alpha 1-proteinase inhibitor (alpha 1-PI) by tetranitromethane yielded a product that maintained its inhibitory activity against trypsin but lost most of its inhibitory activity against elastase. Chemical analysis of the product showed that four out of the six tyrosine residues in alpha 1-PI had been nitrated to various degrees: Tyr-38 and Tyr-297 were not nitrated, whereas Tyr-138, Tyr-160, Tyr-187 and Tyr-244 were nitrated to extents in the range 40-80%. We interpreted these data to mean that modification of these tyrosine residues decreased the association constant between alpha 1-PI and the proteinases and that the decrease differs from one proteinase to the other. When either alpha 1-PI-trypsin or alpha 1-PI-elastase complex was nitrated, nitration took place only to a very slight extent at these latter four tyrosine residues. On the other hand, Tyr-38 and Tyr-297 underwent nitration to about 20%. We concluded that Tyr-138, Tyr-160, Tyr-187 and Tyr-244 were located on the surface of alpha 1-PI that interacts with either trypsin or elastase in the formation of complexes, and were therefore protected from nitration.  相似文献   

19.
In a series of heme and non-heme proteins the nitration of tyrosine residues was assessed by complete pronase digestion and subsequent HPLC-based separation of 3-nitrotyrosine. Bolus addition of peroxynitrite caused comparable nitration levels in all tested proteins. Nitration mainly depended on the total amount of tyrosine residues as well as on surface exposition. In contrast, when superoxide and nitrogen monoxide (NO) were generated at equal rates to yield low steady-state concentrations of peroxynitrite, metal catalysis seemed to play a dominant role in determining the sensitivity and selectivity of peroxynitrite-mediated tyrosine nitration in proteins. Especially, the heme-thiolate containing proteins cytochrome P450(BM-3) (wild type and F87Y variant) and prostacyclin synthase were nitrated with high efficacy. Nitration by co-generated NO/O(2)(-) was inhibited in the presence of superoxide dismutase. The NO source alone only yielded background nitration levels. Upon changing the NO/O(2)(-) ratio to an excess of NO, a decrease in nitration in agreement with trapping of peroxynitrite and derived radicals by NO was observed. These results clearly identify peroxynitrite as the nitrating species even at low steady-state concentrations and demonstrate that metal catalysis plays an important role in nitration of protein-bound tyrosine.  相似文献   

20.
Tyrosine nitration is a well-established protein modification that occurs in disease states associated with oxidative stress and increased nitric oxide synthase activity. Nitration of specific tyrosine residues has been reported to affect protein structure and function, suggesting that 3-nitrotyrosine formation may not only be a disease marker but may also be involved in the pathogenesis of some diseases and in normal regulatory processes. It has been, however, difficult to identify sites of nitration. We describe a method that combines specific isolation of nitrated proteins with mass spectrometric determination of the amino acid sequence and the site of nitration of individual proteins. A complex protein mixture, e.g., serum or cell lysate, was enriched for nitrotyrosine-containing proteins by immunoprecipitation with antinitrotyrosine antibodies. The nitrotyrosines were then reduced to aminotyrosines with a strong reducing agent in parallel in-gel and in-solution procedures. Using nitrated human serum albumin as a model, we reduced the disulfide bonds with dithiothreitol and alkylated the free sulfhydryl groups with iodoacetamide. The nitrotyrosines were next reduced to aminotyrosines with sodium dithionite, and-at pH 5.0-cleavable biotin tags were selectively attached to the aminotyrosines and the albumin was then digested with trypsin. The biotinylated tryptic peptides were purified on a streptavidin affinity column and identified by mass spectrometry. We have also purified nitrated human serum albumin from an enriched sample of SJL mouse plasma and confirmed its identity by peptide mass fingerprinting and MASCOT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号