首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessments of spatial and temporal congruency across taxa from genetic data provide insights into the extent to which similar processes structure communities. However, for coastal regions that are affected continuously by cyclical sea‐level changes over the Pleistocene, congruent interspecific response will not only depend upon codistributions, but also on similar dispersal histories among taxa. Here, we use SNPs to test for concordant genetic structure among four codistributed taxa of freshwater fishes (Teleostei: Characidae) along the Brazilian Atlantic coastal drainages. Based on population relationships and hierarchical genetic structure analyses, we identify all taxa share the same geographic structure suggesting the fish utilized common passages in the past to move between river basins. In contrast to this strong spatial concordance, model‐based estimates of divergence times indicate that despite common routes for dispersal, these passages were traversed by each of the taxa at different times resulting in varying degrees of genetic differentiation across barriers with most divergences dating to the Upper Pleistocene, even when accounting for divergence with gene flow. Interestingly, when this temporal dissonance is viewed through the lens of the species‐specific ecologies, it suggests that an ecological sieve influenced whether species dispersed readily, with an ecological generalist showing the highest propensity for historical dispersal among the isolated rivers of the Brazilian coast (i.e., the most recent divergence times and frequent gene flow estimated for barriers). We discuss how our findings, and in particular what the temporal dissonance, despite common geographic passages, suggest about past dispersal structuring coastal communities as a function of ecological and paleo‐landscape sieves.  相似文献   

2.
The level of genetic diversity and population structure of Acacia senegal variety kerensis in Kenya was examined using seven polymorphic nuclear microsatellite loci and two chloroplast microsatellite loci. In both chloroplast and nuclear datasets, high levels of genetic diversity were found within all populations and genetic differentiation among populations was low, indicating extensive gene flow. Analysis of population structure provided support for the presence of two groups of populations, although all individuals had mixed ancestry. Groups reflected the influence of geography on gene flow, with one representing Rift Valley populations whilst the other represented populations from Eastern Kenya. The similarities between estimates derived from nuclear and chloroplast data suggest highly effective gene dispersal by both pollen and seed in this species, although population structure appears to have been influenced by distributional changes in the past. The few contrasts between the spatial patterns for nuclear and chloroplast data provided additional support for the idea that, having fragmented in the past, groups are now thoroughly mixed as a result of extensive gene flow. For the purposes of conservation and in situ management of genetic resources, sampling could target a few, large populations ideally distributed among the spatial groups identified. This should ensure the majority of extant variation is preserved, and facilitate the investigation of variation in important phenotypic traits and development of breeding populations.  相似文献   

3.
Rivers provide an excellent system to study interactions between patterns of biodiversity structure and ecological processes. In these environments, gene flow is restricted by the spatial hierarchy and temporal variation of connectivity within the drainage network. In the Australian arid zone, this variability is high and rivers often exist as isolated waterholes connected during unpredictable floods. These conditions cause boom/bust cycles in the population dynamics of taxa, but their influence on spatial genetic diversity is largely unknown. We used a landscape genetics approach to assess the effect of hydrological variability on gene flow, spatial population structure and genetic diversity in an Australian freshwater fish, Macquaria ambigua. Our analysis is based on microsatellite data of 590 samples from 26 locations across the species range. Despite temporal isolation of populations, the species showed surprisingly high rates of dispersal, with population genetic structure only evident among major drainage basins. Within drainages, hydrological variability was a strong predictor of genetic diversity, being positively correlated with spring-time flow volume. We propose that increases in flow volume during spring stimulate recruitment booms and dispersal, boosting population size and genetic diversity. Although it is uncertain how the hydrological regime in arid Australia may change under future climate scenarios, management strategies for arid-zone fishes should mitigate barriers to dispersal and alterations to the natural flow regime to maintain connectivity and the species' evolutionary potential. This study contributes to our understanding of the influence of spatial and temporal heterogeneity on population and landscape processes.  相似文献   

4.
Two general processes may influence gene flow among populations. One involves divergent selection, wherein the maladaptation of immigrants and hybrids impedes gene flow between ecological environments (i.e. ecological speciation). The other involves geographic features that limit dispersal. We determined the relative influence of these two processes in natural populations of Trinidadian guppies (Poecilia reticulata). If selection is important, gene flow should be reduced between different selective environments. If geography is important, gene flow should be impeded by geographic distance and physical barriers. We examined how genetic divergence, long-term gene flow, and contemporary dispersal within a watershed were influenced by waterfalls, geographic distance, predation, and habitat features. We found that waterfalls and geographic distance increased genetic divergence and reduced dispersal and long-term gene flow. Differences in predation or habitat features did not influence genetic divergence or gene flow. In contrast, differences in predation did appear to reduce contemporary dispersal. We suggest that the standard predictions of ecological speciation may be heavily nuanced by the mating behaviour and life history strategies of guppies.  相似文献   

5.
Habitat for the northern bobwhite (Colinus virginianus) has declined and changed drastically in spatial structure throughout the last century. Undoubtedly such changes have impacted bobwhite and may have altered their ability to access available habitat. We investigated whether landscape resistance, geographic distance, or interstate highway barriers were related to dispersal and gene flow of bobwhite in central and southern Illinois. Landscape resistance was determined from two empirically informed models depicting habitat suitability for bobwhite. During 2007–2008, hunters submitted bobwhite tissue samples from which we amplified 11 microsatellites. The relationship between individual genetic distances and spatial variables was analyzed with Mantel tests and causal modeling was used to verify the spatial variables influencing gene flow. Genetic distance was correlated with geographic distance but showed no relationship with interstate highway barriers. Habitat suitability did not enhance gene flow, and was inversely related in some partial Mantel tests. We suggest that bobwhite dispersal from suitable habitat patches may be less frequent than from suboptimal habitats. Bobwhite may be able to access suitable habitat across gaps of unsuitable habitat but distance limits their dispersal. Because available habitat for bobwhites may have a greater likelihood of being colonized when closer to occupied habitat, we suggest that lands closer to occupied habitat should be targeted for conservation or habitat improvement efforts.  相似文献   

6.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

7.
The Pleistocene climatic oscillations had profound effects on the demographic history and genetic diversification of plants in arid north-west China where some glacial refugia have been recognized. The genus Ixiolirion comprises three species, of which two, I. tataricum and I. songaricum (endemic), occur in China. In some locations they are sympatric. We investigated their population structure and population history in response to past climatic change using a sample of 619 individuals in 34 populations with nITS and ptDNA sequences. A significant genetic divergence between the two species was supported by a high level of pairwise genetic differentiation, very low gene flow, and phylogenetic analysis showing that I. songaricum haplotypes were monophyletic, whereas those of I. tataricum were polyphyletic. We found significant differentiation and phylogeographic structure in both species. The split of the two species was dated to the late Miocene (~7?Ma), but deep divergence occurred in the mid-late Quaternary. A similar haplotype distribution pattern was found in both species: one to two dominant haplotypes across most populations, with unique haplotypes in a few populations or a geographic group. The genetic diversity, haplotype number, and haplotype diversity decreased from the Yili Valley to the central Tianshan and Barluk Mountains. Additionally, ptDNA analysis showed that I. tataricum diversified in the eastern Tianshan and Barluk Mountains, which might be due to physical barriers to long distance seed dispersal such as desert. In conclusion, our results indicated that the Yili Valley was likely a glacial refuge for Ixiolirion in China, with postglacial dispersal from the Yili Valley eastward to the eastern Tianshan Mountains, and northward to the Barluk Mountains. The climatic changes in the Miocene and Pleistocene and geographic barriers are important factors driving species divergence and differentiation of Ixiolirion and other taxa.  相似文献   

8.
Range limits of species are determined by combined effects of physical, historical, ecological, and evolutionary forces. We consider a subset of these factors by using spatial models of competition, hybridization, and local adaptation to examine the effects of partial dispersal barriers on the locations of borders between similar species. Prompted by results from population genetic models and biogeographic observations, we investigate the conditions under which species' borders are attracted to regions of reduced dispersal. For borders maintained by competition or hybridization, we find that dispersal barriers can attract borders whose positions would otherwise be either neutrally stable or moving across space. Borders affected strongly by local adaptation and gene flow, however, are repelled from dispersal barriers. These models illustrate how particular biotic and abiotic factors may combine to limit species' ranges, and they help to elucidate mechanisms by which range limits of many species may coincide.  相似文献   

9.
Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in south-east Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV). We used two common methodologies for calculating resistance distances in landscape genetics studies (resistance based on least-cost paths and circuit theory). We found a strong effect of saltwater on genetic distance of CRV populations, but no landscape effects were found for the ANM populations. Our discordant results show the importance of examining multiple landscapes that differ in the variability of their features, to maximize detectability of underlying processes and allow results to be broadly applicable across regions. Saltwater serves as a physiological barrier to boreal toad gene flow and affects populations on a small geographic scale, yet there appear to be few other barriers to toad dispersal in this intact northern region.  相似文献   

10.
Species' geographic range limits are most often not demarcated by obvious dispersal barriers. Poor‐quality habitat at the edge of a species' range can prevent range expansion by preventing outward migration or through reducing adaptive potential resulting from decreased genetic diversity. We identified habitat variables that constrain gene flow across the entire geographic range of an endemic salamander (Ambystoma barbouri) in the eastern United States, and we tested whether increased resistance resulting from these variables provides cryptic dispersal barriers at the range edges. Using polymorphic microsatellite loci, we first identified three genetic clusters that are separated by the Ohio and Kentucky rivers. Through a combination of landscape genetic analyses and generalized dissimilarity modelling, we then classified variables that (i) restrict gene flow in each of the genetic clusters across the geographic distribution of A. barbouri and (ii) become more common towards the peripheries of the distribution. A decrease in limestone availability and an increase in growing season precipitation were correlated with high resistance to gene flow across the range, and both became more common at the edges of the species' distribution. However, other landscape variables were more important for explaining variation in geneflow rates in different portions of the range, such as increased mean annual temperature and frost‐free period in the south vs. growing season precipitation in the north. Taken together, these results suggest that there are both range‐wide and regionally specific cryptic habitat barriers preventing geographic range expansion. Species ‘geographic range limits are probably governed by a set of ecological and evolutionary factors, and our landscape genetic approach could be applied to gain additional insight into many systems.  相似文献   

11.
Long‐distance dispersal (LDD) is a pivotal process for plants determining their range of distribution and promoting gene flow among distant populations. Most fleshy‐fruited species rely on frugivorous vertebrates to disperse their seeds across the landscape. While LDD events are difficult to record, a few ecological studies have shown that birds move a sizeable number of ingested seeds across geographic barriers, such as sea straits. The foraging movements of migrant frugivores across distant populations, including those separated by geographic barriers, creates a constant flow of propagules that in turn shapes the spatial distributions of the genetic variation in populations. Here, we have analysed the genetic diversity and structure of 74 populations of Pistacia lentiscus, a fleshy‐fruited shrub widely distributed in the Mediterranean Basin, to elucidate whether the Mediterranean Sea acts as a geographic barrier or alternatively whether migratory frugivorous birds promote gene flow among populations located on both sides of the sea. Our results show reduced genetic distances among populations, including intercontinental populations, and they show a significant genetic structure across an eastern‐western axis. These findings are consistent with known bird migratory routes that connect the European and African continents following a north‐southwards direction during the fruiting season of many fleshy‐fruited plants. Further, approximate Bayesian analysis failed to explain the observed patterns as a result of historical population migrations at the end of Last Glacial Maximum. Therefore, anthropic and/or climatic changes that would disrupt the migratory routes of frugivorous birds might have genetic consequences for the plant species they feed upon.  相似文献   

12.
A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small‐scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50‐m transect, spatial autocorrelation analyses and estimates of full‐siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full‐siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.  相似文献   

13.
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal‐limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation‐by‐distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping‐stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher‐than‐expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.  相似文献   

14.
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio‐temporal variability in genetic structure. Improved understanding of how dispersal influences spatial genetic structure is needed to disentangle the multiple processes that give rise to spatial synchrony in irruptive species. In this study, we examined spatial genetic structure in an economically important irruptive forest insect, the spruce budworm (Choristoneura fumiferana) to better characterize how dispersal, demography and ecological context interact to influence spatial synchrony in a localized outbreak. We characterized spatial variation in microsatellite allele frequencies using 231 individuals and seven geographic locations. We show that (i) gene flow among populations is likely very high (Fst ≈ 0); (ii) despite an overall low level of genetic structure, important differences exist between adult (moth) and juvenile (larvae) life stages; and (iii) the localized outbreak is the likely source of moths captured elsewhere in our study area. This study demonstrates the potential of using molecular methods to distinguish residents from migrants and for understanding how dispersal contributes to spatial synchronization. In irruptive populations, the strength of genetic structure depends on the timing of data collection (e.g. trough vs. peak), location and dispersal. Taking into account this ecological context allows us to make more general characterizations of how dispersal can affect spatial synchrony in irruptive populations.  相似文献   

15.
Little information is available on the extent and patterns of gene flow and genetic diversity between cultivated sorghum and its wild related taxa under local agricultural conditions in Africa. As well as expanding knowledge on the evolutionary and domestication processes for sorghum, such information also has importance in biosafety, conservation and breeding programmes. Here, we examined the magnitude and dynamics of crop–wild gene flow and genetic variability in a crop–wild–weedy complex of sorghum under traditional farming in Meru South district, Kenya. We genotyped 110 cultivated sorghum, and 373 wild sorghum individuals using a panel of ten polymorphic microsatellite loci. We combined traditional measures of genetic diversity and differentiation with admixture analysis, population assignment, and analyses of spatial genetic structure to assess the extent and patterns of gene flow and diversity between cultivated and wild sorghum. Our results indicate that gene flow is asymmetric with higher rates from crop to wild forms than vice versa. Surprisingly, our data suggests that the two congeners have retained substantial genetic distinctness in the face of gene flow. Nevertheless, we found no significant differences in genetic diversity measures between them. Our study also did not find evidence of isolation by distance in cultivated or wild sorghum, which suggests that gene dispersal in the two conspecifics is not limited by geographic distance. Overall our study highlights likely escape and dispersal of transgenes within the sorghum crop–wild–weedy complex if genetically engineered varieties were to be introduced in Africa’s traditional farming systems.  相似文献   

16.
The spatial genetic structure of populations is strongly influenced by current and historical patterns of gene flow and drift, which in the simplest case, is limited by geographic distance. We examined the microspatial genetic structure within 33 populations of song sparrows (Melospiza melodia) which included eight subspecies located across coastal areas in southern British Columbia (BC) and California. We also examined the effect of water barriers and local density estimates on genetic structuring. Across both regions, positive genetic structure was detectable at distances of less than 10 km. Genetic divergence was highest in Californian subspecies, perhaps due to reduced gene flow across sub-specific contact zones. In BC, populations distributed across islands displayed greater genetic structuring over similar spatial scales than those across mainland sites, supporting the prediction that water barriers reduce gene flow in this species. Our results confirm both the expectation for fine-scale genetic structure in these generally sedentary subspecies, and the role of landscape features in generating geographic variation in genetic structure.  相似文献   

17.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   

18.
Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area.  相似文献   

19.
The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.  相似文献   

20.
The potential for widespread, mobile species to exhibit genetic structure without clear geographic barriers is a topic of growing interest. Yet the patterns and mechanisms of structure--particularly over broad spatial scales--remain largely unexplored for these species. Bobcats occur across North America and possess many characteristics expected to promote gene flow. To test whether historical, topographic or ecological factors have influenced genetic differentiation in this species, we analysed 1 kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range. The primary signature in both marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains. Thus, the data distinguished bobcats in the eastern USA from those in the western half, with no obvious physical barrier to gene flow. Demographic analyses supported a scenario of expansion from separate Pleistocene refugia, with the Great Plains representing a zone of secondary contact. Substructure within the two main lineages likely reflected founder effects, ecological factors, anthropogenic/topographic effects or a combination of these forces. Two prominent topographic features, the Mississippi River and Rocky Mountains, were not supported as significant genetic barriers. Ecological regions and environmental correlates explained a small but significant proportion of genetic variation. Overall, results implicate historical processes as the primary cause of broad-scale genetic differentiation, but contemporary forces seem to also play a role in promoting and maintaining structure. Despite the bobcat's mobility and broad niche, large-scale landscape changes have contributed to significant and complex patterns of genetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号