首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.  相似文献   

2.
Petunia flower petals emit large amounts of isoeugenol, which has been shown to be synthesized by isoeugenol synthase (PhIGS1) from an ester of coniferyl alcohol, hypothesized to be coniferyl acetate. This paper describes the identification and characterization of a novel petunia gene encoding an enzyme belonging to the BAHD acyltransferase family whose expression correlates with isoeugenol biosynthesis. RNAi suppression of this gene results in inhibition of isoeugenol biosynthesis. Biochemical characterization of the protein encoded by this gene showed that it has acetyltransferase activity and is most efficient with coniferyl alcohol among the alcohol substrates tested. Overall, these data support the conclusion that coniferyl acetate is the substrate of isoeugenol synthase.  相似文献   

3.
Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2‐methylbutyl acetate and hexyl acetate) both co‐located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518 ), and here we show it is also required to produce p‐hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic ‘Royal Gala’ MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over‐expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O‐methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p‐coumaryl and coniferyl alcohols, indicating that ripening‐related AATs are likely to link volatile ester and phenylpropene production in many different fruit.  相似文献   

4.
Wild strawberry (Fragaria vesca) fruit contains several important phenylpropene aroma compounds such as eugenol, but cultivated varieties are mostly devoid of them. We have redirected the carbon flux in cultivated strawberry (Fragaria×ananassa) fruit from anthocyanin pigment biosynthesis to the production of acetates of hydroxycinnamyl alcohols, which serve as the precursors of the phenylpropenes, by downregulating the strawberry chalcone synthase (CHS) via RNAi-mediated gene silencing and, alternatively, by an antisense CHS construct. Simultaneous heterologous overexpression of a eugenol (EGS) and isoeugenol synthase (IGS) gene in the same cultivated strawberry fruits boosted the formation of eugenol, isoeugenol, and the related phenylpropenes chavicol and anol to concentrations orders of magnitude greater than their odor thresholds. The results show that Fragaria×ananassa still bears a phenylpropene biosynthetic pathway but the carbon flux is primarily directed to the formation of pigments. Thus, partial restoration of wild strawberry flavor in cultivated varieties is feasible by diverting the flavonoid pathway to phenylpropene synthesis through metabolic engineering.  相似文献   

5.
Floral scent has been extensively investigated in plants of the South American genus Petunia. Flowers of Petunia integrifolia emit mostly benzaldehyde, while flowers of Petunia axillaris subsp. axillaris emit a mixture of volatile benzenoid and phenylpropanoid compounds that include isoeugenol and eugenol. Flowers of the artificial hybrid Petunia hybrida, a cross between P. integrifolia and P. axillaris, emit a similar spectrum of volatiles as P. axillaris subsp. axillaris. However, the flowers of P. axillaris subsp. parodii emit neither isoeugenol nor eugenol but contain high levels of dihydroconiferyl acetate in the petals, the main scent‐synthesizing and scent‐emitting organs. We recently showed that both isoeugenol and eugenol in P. hybrida are biosynthesized from coniferyl acetate in reactions catalyzed by isoeugenol synthase (PhIGS1) and eugenol synthase (PhEGS1), respectively, via a quinone methide‐like intermediate. Here we show that P. axillaris subsp. parodii has a functional EGS gene that is expressed in flowers, but its IGS gene contains a frame‐shift mutation that renders it inactive. Despite the presence of active EGS enzyme in P. axillaris subsp. parodii, in the absence of IGS activity the coniferyl acetate substrate is converted by an as yet unknown enzyme to dihydroconiferyl acetate. By contrast, suppressing the expression of PhIGS1 in P. hybrida by RNA interference also leads to a decrease in isoeugenol biosynthesis, but instead of the accumulation of dihydroconiferyl acetate, the flowers synthesize higher levels of eugenol.  相似文献   

6.
7.
A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p‐anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p‐coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4‐year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4‐year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross‐pollination, etc.) with wild‐type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10‐ to 40‐fold plus) in foliage and stems via systematic deployment of numerous ‘omics’, systems biology, synthetic biology and metabolic flux modelling approaches.  相似文献   

8.
Propenylbenzenes are often used as starting materials in the chemical synthesis of aroma compounds and fine chemicals. In the present study, we demonstrate the ability of an Arthrobacter sp. to transform various structures of propenylbenzenes derived from essential oils to flavor, fragrance, and fine chemicals. Arthrobacter strain TA13 and its t-anethole blocked mutants (incapable of growing on t-anethole) converted isoeugenol to vanillin and vanillic acid; and safrole to hydroxychavicol. High conversion efficiencies were achieved in the biotransformations of isosafrole to piperonylic acid, and eugenol to a mixture of ferulic acid and vanillic acid. In addition, anisic acid was produced in high yields from t-anethole, anisyl alcohol, or anisaldehyde. The accumulation of the corresponding aromatic acids from the tested propenylbenzenes is due to the lack of m-demethylase activity in strain TA13 that prevents further cleavage of the benzene ring. Interestingly, in the transformation of eugenol (a 2-propenylbenzene) the side chain was initially oxidized to the corresponding cinamic acid derivative (ferulic acid) while the 1-propenylbenzenes gave substituted benzoic acids, suggesting two different chain shortening mechanisms.  相似文献   

9.
Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.  相似文献   

10.
The Bacteroides fragilis capsular polysaccharide complex is the major virulence factor for abscess formation in human hosts. Polysaccharide B of this complex contains a 2-aminoethylphosphonate functional group. This functional group is synthesized in three steps, one of which is catalyzed by phosphonopyruvate decarboxylase. In this paper, we report the cloning and overexpression of the B. fragilis phosphonopyruvate decarboxylase gene (aepY), purification of the phosphonopyruvate decarboxylase recombinant protein, and the extensive characterization of the reaction that it catalyzes. The homotrimeric (41,184-Da subunit) phosphonopyruvate decarboxylase catalyzes (kcat = 10.2 +/- 0.3 s-1) the decarboxylation of phosphonopyruvate (Km = 3.2 +/- 0.2 microm) to phosphonoacetaldehyde (Ki = 15 +/- 2 microm) and carbon dioxide at an optimal pH range of 7.0-7.5. Thiamine pyrophosphate (Km = 13 +/- 2 microm) and certain divalent metal ions (Mg(II) Km = 82 +/- 8 microm; Mn(II) Km = 13 +/- 1 microm; Ca(II) Km = 78 +/- 6 microm) serve as cofactors. Phosphonopyruvate decarboxylase is a member of the alpha-ketodecarboxylase family that includes sulfopyruvate decarboxylase, acetohydroxy acid synthase/acetolactate synthase, benzoylformate decarboxylase, glyoxylate carboligase, indole pyruvate decarboxylase, pyruvate decarboxylase, the acetyl phosphate-producing pyruvate oxidase, and the acetate-producing pyruvate oxidase. The Mg(II) binding residue Asp-260, which is located within the thiamine pyrophosphate binding motif of the alpha-ketodecarboxylase family, was shown by site-directed mutagenesis to play an important role in catalysis. Pyruvate (kcat = 0.05 s-1, Km = 25 mm) and sulfopyruvate (kcat approximately 0.05 s-1; Ki = 200 +/- 20 microm) are slow substrates for the phosphonopyruvate decarboxylase, indicating that this enzyme is promiscuous.  相似文献   

11.
Plants that contain high concentrations of the defense compounds of the phenylpropene class (eugenol, chavicol, and their derivatives) have been recognized since antiquity as important spices for human consumption (e.g. cloves) and have high economic value. Our understanding of the biosynthetic pathway that produces these compounds in the plant, however, has remained incomplete. Several lines of basil (Ocimum basilicum) produce volatile oils that contain essentially only one or two specific phenylpropene compounds. Like other members of the Lamiaceae, basil leaves possess on their surface two types of glandular trichomes, termed peltate and capitate glands. We demonstrate here that the volatile oil constituents eugenol and methylchavicol accumulate, respectively, in the peltate glands of basil lines SW (which produces essentially only eugenol) and EMX-1 (which produces essentially only methylchavicol). Assays for putative enzymes in the biosynthetic pathway leading to these phenylpropenes localized many of the corresponding enzyme activities almost exclusively to the peltate glands in leaves actively producing volatile oil. An analysis of an expressed sequence tag database from leaf peltate glands revealed that known genes for the phenylpropanoid pathway are expressed at very high levels in these structures, accounting for 13% of the total expressed sequence tags. An additional 14% of cDNAs encoded enzymes for the biosynthesis of S-adenosyl-methionine, an important substrate in the synthesis of many phenylpropenes. Thus, the peltate glands of basil appear to be highly specialized structures for the synthesis and storage of phenylpropenes, and serve as an excellent model system to study phenylpropene biosynthesis.  相似文献   

12.
The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker delta-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.  相似文献   

13.
Holostylis reniformis biosynthesizes 8-8′ linked lignans without 9,9′-oxygenation. To elucidate the biosynthetic pathways to these lignans, the reputed precursors [U-14C]phenylalanine, [9-3H1]coniferyl alcohol, and [9-3H1]isoeugenol were administered to roots of the plant, which led to the incorporation of 3H and 14C into ten 2,7′ linked-lignans (aryltetralone lignans) and two 7,7′-epoxylignans (furan lignans). These administration experiments demonstrated that the lignans were propenylphenol-derived and that H. reniformis can exhibit regioselective control over radical-radical coupling (via isoeugenol radicals). Regiospecific control over propenylphenol-derived lignan biosynthesis was observed, together with diastereoselective control of C2-C7′ bond formation for the aryltetralone lignans (7′R). These experiments provide evidence that isoeugenol is a biosynthetic intermediate to the aryltetralone and furan lignans.  相似文献   

14.
15.
Hua D  Ma C  Lin S  Song L  Deng Z  Maomy Z  Zhang Z  Yu B  Xu P 《Journal of biotechnology》2007,130(4):463-470
A bacterial strain S-1 capable of transforming isoeugenol to vanillin was isolated. The strain was identified as Bacillus pumilus based on biochemical tests, cellular fatty acid composition, riboprint pattern and 16S rRNA gene sequence analyses. In the biotransformation of isoeugenol, vanillin was the main product. With the growing culture of B. pumilus S-1, 10 g l−1 isoeugenol was converted to 3.75 g l−1 vanillin in 150 h, with a molar yield of 40.5% that is the highest up to now. Dehydrodiisoeugenol, a dimer of isoeugenol, was separated by preparative thin layer chromatography and identified by gas chromatography–mass spectrometry. Based on the accurate masses obtained from gas chromatography–high resolution mass spectrometry, two key intermediates, isoeugenol-epoxide (IE) and isoeugenol-diol (ID), were identified by mass spectra interpretations. The biotransformation with resting cells showed that vanillin was oxidized to vanillic acid and then to protocatechuic acid before the aromatic ring was broken. These findings suggest that isoeugenol is degraded through an epoxide-diol pathway.  相似文献   

16.
After 6 months of incubation in a fertile neutral sandy loam, about 48% of the ring carbons and 2-carbons and 60% of the OCH(3) carbons of specifically labeled coniferyl alcohol had evolved as CO(2). After 1 year, corresponding values were 55 and 65%. When coniferyl alcohol units were linked into model and cornstalk lignins, about 23% of the ring carbons and 2-carbons and 39% of the OCH(3) carbons had evolved as CO(2) after 6 months. After 1 year, corresponding values were about 28 and 46%. The addition of orange leaves (0.5%, wt/wt) after 6 months did not significantly increase the evolution of CO(2). Addition of orange leaves (0.5%, wt/wt) with specifically C-labeled pyrocatechol, coumaryl alcohol, model lignins, humic acid-type phenolic polymers and of uniformly C-labeled fungal melanins did not increase labeled C losses or C losses from the orange leaves. Decomposition of protein and pyrocatechol linked into model humic acid polymers, coniferyl alcohol C in model lignins, and Eurotium echinulatum melanin in six soils varied from 2 to 14%. Significant differences in C losses were related to soils and were not influenced by orange leaf applications.  相似文献   

17.
Acryloyl-CoA reductase from Clostridium propionicum catalyses the irreversible NADH-dependent formation of propionyl-CoA from acryloyl-CoA. Purification yielded a heterohexadecameric yellow-greenish enzyme complex [(alpha2betagamma)4; molecular mass 600 +/- 50 kDa] composed of a propionyl-CoA dehydrogenase (alpha2, 2 x 40 kDa) and an electron-transferring flavoprotein (ETF; beta, 38 kDa; gamma, 29 kDa). A flavin content (90% FAD and 10% FMN) of 2.4 mol per alpha2betagamma subcomplex (149 kDa) was determined. A substrate alternative to acryloyl-CoA (Km = 2 +/- 1 microm; kcat = 4.5 s-1 at 100 microm NADH) is 3-buten-2-one (methyl vinyl ketone; Km = 1800 microm; kcat = 29 s-1 at 300 microm NADH). The enzyme complex exhibits acyl-CoA dehydrogenase activity with propionyl-CoA (Km = 50 microm; kcat = 2.0 s-1) or butyryl-CoA (Km = 100 microm; kcat = 3.5 s-1) as electron donor and 200 microm ferricenium hexafluorophosphate as acceptor. The enzyme also catalysed the oxidation of NADH by iodonitrosotetrazolium chloride (diaphorase activity) or by air, which led to the formation of H2O2 (NADH oxidase activity). The N-terminus of the dimeric propionyl-CoA dehydrogenase subunit is similar to those of butyryl-CoA dehydrogenases from several clostridia and related anaerobes (up to 55% sequence identity). The N-termini of the beta and gamma subunits share 40% and 35% sequence identities with those of the A and B subunits of the ETF from Megasphaera elsdenii, respectively, and up to 60% with those of putative ETFs from other anaerobes. Acryloyl-CoA reductase from C. propionicum has been characterized as a soluble enzyme, with kinetic properties perfectly adapted to the requirements of the organism. The enzyme appears not to be involved in anaerobic respiration with NADH or reduced ferredoxin as electron donors. There is no relationship to the trans-2-enoyl-CoA reductases from various organisms or the recently described acryloyl-CoA reductase activity of propionyl-CoA synthase from Chloroflexus aurantiacus.  相似文献   

18.
河套蜜瓜ACC合成酶cDNA片段的克隆和序列分析   总被引:3,自引:0,他引:3  
1-氨基环丙烷-1-羧酸(ACC)合成酶是高等植物中乙烯生物合成的关键酶。以成熟河套蜜瓜(CucumismeloL.cvHetau)果实的RNA为模板,经反转录和PCR扩增得到预期大小的DNA片段,插入到pUC19的SmaⅠ位点后转化E.coliJM109,筛选出重组子pHMAS1。序列分析表明获得了长627bp的ACC合成酶cDNA片段。与已报道的ACC合成酶基因相应序列比较有很高的同源性.  相似文献   

19.
20.
Coniferyl esters--capsiconiate and dihydrocapsiconiate--were isolated from the fruits of the pepper, Capsicum baccatum L. var. praetermissum. Their structures were determined by spectroscopic methods to be coniferyl (E)-8-methyl-6-nonenoate (capsiconiate) and coniferyl 8-methylnonanoate (dihydrocapsiconiate). This finding was further confirmed by the lipase-catalyzed condensation of coniferyl alcohol with its corresponding fatty acid derivative. The agonist activity of the esters for transient receptor potential vanilloid 1 (TRPV1) was evaluated by conducting an analysis of the intracellular calcium concentrations in TRPV1-expressing HEK293 cells. The EC50 values of capsiconiate and dihydrocapsiconiate were 3.2 and 4.2 microM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号