首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.  相似文献   

2.
Redox and antioxidant systems of the malaria parasite Plasmodium falciparum   总被引:4,自引:0,他引:4  
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.  相似文献   

3.
The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of gamma-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.  相似文献   

4.
The degradation of hemoglobin by the malaria parasite, Plasmodium falciparum, produces free ferriprotoporphyrin IX (FP) as a toxic by-product. In the presence of FP-binding drugs such as chloroquine, FP detoxification is inhibited, and the build-up of free FP is thought to be a key mechanism in parasite killing. In an effort to identify parasite proteins that might interact preferentially with FP, we have used a mass spectrometry approach. Proteins that bind to FP immobilized on agarose include P. falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGAPDH), P. falciparum glutathione reductase (PfGR), and P. falciparum protein disulfide isomerase. To examine the potential consequences of FP binding, we have examined the ability of FP to inhibit the activities of GAPDH and GR from P. falciparum and other sources. FP inhibits the enzymic activity of PfGAPDH with a Ki value of 0.2 microm, whereas red blood cell GAPDH is much less sensitive. By contrast, PfGR is more resistant to FP inhibition (Ki > 25 microm) than its human counterpart. We also examined the ability of FP to inhibit the activities of the additional antioxidant enzymes, P. falciparum thioredoxin reductase, which exhibits a Ki value of 1 microm, and P. falciparum glutaredoxin, which shows more moderate sensitivity to FP. The exquisite sensitivity of PfGAPDH to FP may indicate that the glycolytic pathway of the parasite is particularly susceptible to modulation by FP stress. Inhibition of this pathway may drive flux through the pentose phosphate pathway ensuring sufficient production of reducing equivalents to counteract the oxidative stress induced by FP build-up.  相似文献   

5.
Redox imbalance elicited by oxidative stress contributes to pathogenic remodeling of ion channels that underlies arrhythmogenesis and contractile dysfunction in the failing heart. This study examined whether the expression of K(+) channels in the remodeled ventricle is controlled by the thioredoxin system, a principal oxidoreductase network regulating redox-sensitive proteins. Ventricular dysfunction was induced in rats by coronary artery ligation, and experiments were conducted 6-8 wk postinfarction. Biochemical assays of tissue extracts from infarcted hearts showed that thioredoxin reductase activity was decreased by 32% from sham-operated controls (P < 0.05), whereas thioredoxin activity was 51% higher postinfarction (P < 0.05). These differences in activities paralleled changes in protein abundance as determined by Western blot analysis. However, whereas real-time PCR showed thioredoxin reductase mRNA levels to be significantly decreased postinfarction, thioredoxin mRNA was not altered. In voltage-clamp studies of myocytes from infarcted hearts, the characteristic downregulation of transient-outward K(+) current density was reversed by exogenous pyruvate (5 mmol/l), and this effect was blocked by the specific inhibitors of the thioredoxin system: auranofin or 13-cis-retinoic acid. Real-time PCR and Western blot analyses of myocyte suspensions from infarcted hearts showed that pyruvate increased mRNA and protein abundance of Kv4.2 and Kv4.3 channel alpha-subunits as well as the accessory protein KChIP2 when compared with time-matched, untreated cells (P < 0.05). The pyruvate-induced increase in Kv4.x expression was blocked by auranofin, but the upregulation of KChIP2 expression was not affected. These data suggest that the expression of Kv4.x channels is redox-regulated by the thioredoxin system, which may be a novel therapeutic target to reverse or limit electrical remodeling of the failing heart.  相似文献   

6.
Human cytosolic thioredoxin reductase (TrxR), a homodimeric protein containing 1 selenocysteine and 1 FAD per subunit of 55 kDa, catalyses the NADPH-dependent reduction of thioredoxin disulfide and of numerous other oxidized cell constituents. As a general reducing enzyme with little substrate specificity, it also contributes to redox homeostasis and is involved in prevention, intervention and repair of damage caused by H2O2-based oxidative stress. Being a selenite-reducing enzyme as well as a selenol-containing enzyme, human TrxR plays a central role in selenium (patho)physiology. Both dietary selenium deficiency and selenium oversupplementation, a lifestyle phenomenon of our time, appear to interfere with the activity of TrxR. Selenocysteine 496 of human TrxR is a major target of the anti-rheumatic gold-containing drug auranofin, the formal Ki for the stoichiometric inhibition being 4 nM. The hypothesis that TrxR and extracellular thioredoxin play a pathophysiologic role in chronic diseases such as rheumatoid arthritis, Sj?gren's syndrom, AIDS, and certain malignancies, is substantiated by biochemical, virological, and clinical evidence. Reduced thioredoxin acts as an autocrine growth factor in various tumour diseases, as a chemoattractant, and it synergises with interleukins 1 and 2. The effects of anti-tumour drugs such as carmustine and cisplatin can be explained in part by the inhibition of TrxR. Consistently, high levels of the enzyme can support drug resistance. TrxRs from different organisms such as Escherichia coli, Mycobacterium leprae, Plasmodium falciparum, Drosophila melanogaster, and man show a surprising diversity in their chemical mechanism of thioredoxin reduction. This is the basis for attempts to develop specific TrxR inhibitors as drugs against bacterial infections like leprosy and parasitic diseases like amebiasis and malaria.  相似文献   

7.
The sigH gene of Corynebacterium glutamicum encodes ECF sigma factor sigmaH. The gene apparently plays an important role in other stress responses as well as heat stress response. In this study, we found that deleting the sigH gene made C. glutamicum cells sensitive to the thiol-specific oxidant diamide. In the sigH mutant strain, the activity of thioredoxin reductase markedly decreased, suggesting that the trxB gene encoding thioredoxin reductase is probably under the control of sigmaH. The expression of sigH was stimulated in the stationary growth phase and modulated by diamide. In addition, the SigH protein was required for the expression of its own gene. These data indicate that the sigH gene of C. glutamicum stimulates and regulates its own expression in the stationary growth phase in response to environmental stimuli, and participates in the expression of other genes which are important for survival following heat and oxidative stress response.  相似文献   

8.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

9.
10.
11.
Increased intracellular reactive oxygen species (ROS) contribute to vascular disease and pro-atherosclerotic effects of diabetes mellitus may be mediated by oxidative stress. Several ROS-scavenging systems tightly control cellular redox balance; however, their role in hyperglycemia-induced oxidative stress is unclear. A ubiquitous antioxidative mechanism for regulating cellular redox balance is thioredoxin, a highly conserved thiol reductase that interacts with an endogenous inhibitor, thioredoxin-interacting protein (Txnip). Here we show that hyperglycemia inhibits thioredoxin ROS-scavenging function through p38 MAPK-mediated induction of Txnip. Overexpression of Txnip increased oxidative stress, while Txnip gene silencing restored thioredoxin activity in hyperglycemia. Diabetic animals exhibited increased vascular expression of Txnip and reduced thioredoxin activity, which normalized with insulin treatment. These results provide evidence for the impairment of a major ROS-scavenging system in hyperglycemia. These studies implicate reduced thioredoxin activity through interaction with Txnip as an important mechanism for vascular oxidative stress in diabetes mellitus.  相似文献   

12.
13.
Broin M  Cuiné S  Peltier G  Rey P 《FEBS letters》2000,467(2-3):245-248
In animal cells, yeast and bacteria, thioredoxins are known to participate in the response to oxidative stress. We recently identified a novel type of plant thioredoxin named CDSP 32 for chloroplastic drought-induced stress protein of 32 kDa. In the present work, we measured comparable increases in the glutathione oxidation ratio and in the level of chlorophyll thermoluminescence, a specific marker for thylakoid lipid peroxidation in Solanum tuberosum plants subjected to drought or oxidative treatments (photooxidative stress, gamma irradiation and methyl viologen spraying). Further, substantial accumulations of CDSP 32 mRNA and protein were revealed upon oxidative treatments. These data show for the first time in plants the induction of a thioredoxin by oxidative stress. We conclude that CDSP 32 may preserve chloroplastic structures against oxidative injury upon drought.  相似文献   

14.
15.
The malarial parasite Plasmodium falciparum is known to be sensitive to oxidative stress, and thus the antioxidant enzyme glutathione reductase (GR; NADPH+GSSG+H(+) <==> NADP(+)+2 GSH) has become an attractive drug target for antimalarial drug development. Here, we report the 2.6A resolution crystal structure of P.falciparum GR. The homodimeric flavoenzyme is compared to the related human GR with focus on structural aspects relevant for drug design. The most pronounced differences between the two enzymes concern the shape and electrostatics of a large (450A(3)) cavity at the dimer interface. This cavity binds numerous non-competitive inhibitors and is a target for selective drug design. A 34-residue insertion specific for the GRs of malarial parasites shows no density, implying that it is disordered. The precise location of this insertion along the sequence allows us to explain the deleterious effects of a mutant in this region and suggests new functional studies. To complement the structural comparisons, we report the relative susceptibility of human and plasmodial GRs to a series of tricyclic inhibitors as well as to peptides designed to interfere with protein folding and dimerization. Enzyme-kinetic studies on GRs from chloroquine-resistant and chloroquine-sensitive parasite strains were performed and indicate that the structure reported here represents GR of P.falciparum strains in general and thus is a highly relevant target for drug development.  相似文献   

16.
The thiol-disulfide redox metabolism in platyhelminth parasites depends entirely on a single selenocysteine (Sec) containing flavoenzyme, thioredoxin glutathione reductase (TGR) that links the classical thioredoxin (Trx) and glutathione (GSH) systems. In the present study, we investigated the catalytic and structural properties of different variants of Fasciola gigantica TGR to understand the role of Sec. The recombinant full-length Sec containing TGR (FgTGRsec), TGR without Sec (FgTGR) and TGRsec without the N-terminal glutaredoxin (Grx) domain (?NTD-FgTGRsec) were purified to homogeneity. Biochemical studies revealed that Sec597 is responsible for higher thioredoxin reductase (TrxR) and glutathione reductase (GR) activity of FgTGRsec. The N-terminal Grx domain was found to positively regulate the DTNB-based TrxR activity of FgTGRsec. The FgTGRsec was highly sensitive to inhibition by auranofin (AF). The structure of FgTGR was modeled, and the inhibitor AF was docked, and binding sites were identified. Unfolding studies suggest that all three proteins are highly cooperative molecules since during GdnHCl-induced denaturation, a monophasic unfolding of the proteins without stabilization of any intermediate is observed. The Cm for GdnHCl induced unfolding of FgTGR was higher than FgTGRsec and ?NTD-FgTGRsec suggesting that FgTGR without Sec was more stable in solution than the other protein variants. The free energy of stabilization for the proteins was also determined. To our knowledge, this is also the first report on unfolding and stability analysis of any TGR.  相似文献   

17.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

18.
Thioredoxin reductase (TrxR) is overpressed in many human tumors and has a key role in regulating intracellular redox balance. Recently, thioredoxin system has emerged as a valuable target for anticancer drug development. Herein we demonstrate that selenocystine (SeC) could enhance auranofin (AF)-induced A549 human lung adenocarcinoma cell apoptosis in vitro and in vivo through synergetic inhibition of TrxR1. SeC pretreatment significantly enhanced AF-induced loss of mitochondrial membrane potential (Δψm) by regulating Bcl-2 family proteins. The combined treatment with SeC and AF also resulted in enhanced intracellular reactive oxygen species (ROS) accumulation, DNA damage, and inactivation of ERK and AKT. Inhibitors of ERK and AKT effectively enhanced combined treatment-induced apoptotic cell death. However, inhibition of ROS reversed the apoptosis induced by SeC and AF, and recovered the inactivation of ERK and AKT, which revealed the importance of ROS in cell apoptosis and regulation of ERK and AKT pathways. Moreover, xenograft lung tumor growth in nude mice was more effectively inhibited by combined treatment with SeC and AF by induction of apoptosis through targeting TrxR1 in vivo. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR1.  相似文献   

19.
Most aerobic organisms are exposed to oxidative stress. Looking for enzyme activities involved in the bacterial response to this kind of stress, we focused on the btuE-encoded Escherichia coli BtuE, an enzyme that shares homology with the glutathione peroxidase (GPX) family. This work deals with the purification and characterization of the btuE gene product.Purified BtuE decomposes in vitro hydrogen peroxide in a glutathione-dependent manner. BtuE also utilizes preferentially thioredoxin A to decompose hydrogen peroxide as well as cumene-, tert-butyl-, and linoleic acid hydroperoxides, confirming that its active site confers non-specific peroxidase activity. These data suggest that the enzyme may have one or more organic hydroperoxide as its physiological substrate.The btuE gene was induced when cells were exposed to oxidative stress elicitors that included potassium tellurite, menadione and hydrogen peroxide, among others, suggesting that BtuE could participate in the E. coli response to reactive oxygen species. To our knowledge, this is the first report describing a glutathione peroxidase in E. coli.  相似文献   

20.
Aims: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. Methods and Results: Screening of 21 lager brewing yeast strains against diamide and paraquat showed that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced ageing experiments. Interestingly, the strain with the lowest oxidative stress resistance and lowest secretion of thioredoxin, as measured by Western blotting, resulted in the highest uptake of iron, as measured by inductively coupled plasma‐mass spectrometry, and the slowest formation of radicals in the model beers. Conclusions: A more oxidative stable beer is not obtained by a more‐oxidative‐stress‐tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less‐oxidative‐stress‐tolerant strain, exhibiting a higher iron uptake. Significance and Impact of the Study: To obtain lager beers with enhanced oxidative stability, yeast strains should be screened for their low oxidative stress tolerance and/or high ability to take up iron rather than for their high oxidative stress tolerance and/or high ability to secrete thioredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号