首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our recent studies have displayed the protective functions of aspirin against heat stress (HS) in chicken myocardial cells, and it may be associated with heat shock proteins (HSPs). In this study, we further investigated the potential role of HSPs in the aspirin-induced heat stress resistance. Four of the most important HSPs including HspB1 (Hsp27), Hsp60, Hsp70, and Hsp90 were induced by aspirin pretreatment and were suppressed by BAPTA-AM. When HSPs were induced by aspirin, much slighter HS injury was detected. But more serious damages were observed when HSPs were suppressed by BAPTA-AM than those cells exposed to HS without BAPTA-AM, even the myocardial cells have been treated with aspirin in prior. Comparing to other HSPs, HspB1 presented the largest increase after aspirin treatments, 86-fold higher than the baseline (the level before HS). These findings suggested that multiple HSPs participated in aspirin’s anti-heat stress function but HspB1 may contribute the most. Interestingly, during the experiments, we also found that apoptosis rate as well as the oxidative stress indicators (T-SOD and MDA) was not consistently responding to heat stress injury as expected. By selecting from a series of candidates, myocardial cell damage-related enzymes (CK-MB and LDH), cytopathological tests, and necrosis rate (measured by flow cytometry assays) are believed to be reliable indicators to evaluate heat stress injury in chicken’s myocardial cells and they will be used in our further investigations.  相似文献   

3.
Heat-related illness and injury are becoming a growing safety concern for the farmers, construction workers, miners, firefighters, manufacturing workers, and other outdoor workforces who are exposed to heat stress in their routine lives. A primary response by a cell to an acute heat shock (HS) exposure is the induction of heat-shock proteins (HSPs), which chaperone and facilitate cellular protein folding and remodeling processes. While acute HS is well studied, the effect of repeated bouts of hyperthermia and the sustained production of HSPs in the myoblast-myotube model system of C2C12 cells are poorly characterized. In C2C12 myoblasts, we found that robust HS (43 °C, dose/time) significantly decreased the proliferation by 50% as early as on day 1 and maintained at the same level on days 2 and 3 of HS. This was accompanied by an accumulation of cells at G2 phase with reduced cell number in G1 phase indicating cell cycle arrest. FACS analysis indicates that there was no apparent change in apoptosis (markers) and cell death upon repeated HS. Immunoblot analysis and qPCR demonstrated a significant increase in the baseline expression of HSP25, 70, and 90 (among others) in cells after a single HS (43 °C) for 60 min as a typical HS response. Importantly, the repeated HS for 60 min each on days 2 and 3 maintained the elevated levels of HSPs compared to the control cells. Further, the continuous HS exposure resulted in significant inhibition of the differentiation of C2C12 myocytes to myotubes and only 1/10th of the cells underwent differentiation in HS relative to control. This was associated with significantly higher levels of HSPs and reduced expression of myogenin and Myh2 (P < 0.05), the genes involved in the differentiation process. Finally, the cell migration (scratch) assay indicated that the wound closure was significantly delayed in HS cells relative to the control cells. Overall, these results suggest that a repeated HS may perturb the active process of proliferation, motility, and differentiation processes in an in vitro murine myoblast-myotube model.  相似文献   

4.
We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

6.
Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.  相似文献   

7.
昆虫的热休克反应和热休克蛋白   总被引:5,自引:1,他引:5  
李冰祥  蔡惠罗 《昆虫学报》1997,40(4):417-427
热休克(热激heatshock)是指短暂、迅速地向高温转换所诱导出的一种固定的应激反应。诱导该反应的温度在种与种之间有所不同。热休克反应最明显的特征是:伴随着正常蛋白质合成的抑制,一部分特殊蛋白质的诱导和表达增加,即为热休克蛋白(heatshockproteins,HSPs)。尽管热休克蛋白的合成也能被其它形式的应激反应所诱导,将它们认为是应激蛋白可能更恰当,但人们习惯上仍将这类蛋白质称为热休克蛋白。由于热休克反应和热休克蛋白是在果蝇(Drosophiliamelanogaster)中最初发现的,故在昆虫中,特别是果蝇等双翅目昆虫中研究得较深入…  相似文献   

8.
  • 1.1. Neurospora cells were grown at 28°C for 14hr and subjected to heat shock (HS) at 48°C for 45 min. Protein synthesis profiles, monitored by labelling with [35S]methionine and one and two-dimensional electrophoresis, revealed nine heat shock proteins (HSPs).
  • 2.2. Crossed-immunoelectrophoresis revealed five polypeptides in the shocked cell extracts that were not detectable in normal cells.
  • 3.3. Synthesis of HSPs occurred rapidly during the shock treatment and ceased upon transfer to normal conditions. One of the HSPs—~43 K in size—may be a developmentally-regulated protein.
  • 4.4. Metal ions—cadmium, zinc, manganese, copper—did not elicit a stress response when used alone but appeared to modulate the heat shock response.
  相似文献   

9.
10.
When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.  相似文献   

11.
12.
Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the ‘cAMP-sponge’, a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.  相似文献   

13.
14.
15.
Molecular responses of plants to an increased incidence of heat shock   总被引:9,自引:0,他引:9  
Abstract. Climatic change as a result of the greenhouse effect is widely predicted to increase mean temperatures globally and, in turn, increase the frequency with which plants are exposed to heat shock conditions, particularly in the semi-arid tropics. The consequences of extreme high-temperature treatments on plants have been considered, particularly in relation to the synthesis of heat shock proteins (HSPs) and the capacity to acquire thermotolerance. The heat shock response is described using results obtained with seedlings of the tropical cereals, sorghum ( Sorghum bicolor ) and pearl millet ( Pennisetum glaucum ). A gradual temperature increase, as would occur in the field, is sufficient to induce thermotolerance. The synthesis of HSPs is a transient phenomenon and ceases once the stress is released. Despite the persistence of the HSPs themselves, de novo synthesis of HSPs is required for the induction of thermotolerance each time high temperatures are encountered. The effect of a repeated, diurnal heat shock was investigated and genotypic differences found in the ability to induce the heat shock response repeatedly.  相似文献   

16.
Soybean seedlings when exposed to a heat shock respond in a manner very similar to that exhibited by cultured cells, and reported earlier [2]. Maximum synthesis of heat shock proteins (HSPs) occurs at 40C. The heat shock response is maintained for a relatively short time under continuous high temperature. After 2.5 hr at 40 C the synthesis of HSPs decreases reaching a very low level by 6 hr. The HSPs synthesized by cultured cells and seedlings are identical and there is a large degree of similarity in HSPs synthesized between the taxonomically widely separated species, soybean and corn. Storage protein synthesis in the developing soybean embryo is not inhibited but is actually stimulated during a heat shock, unlike most other non-HSPs, whose synthesis is greatly reduced. Seedlings respond differently to a gradual increase in temperature than they do a sudden heat shock. There is an upward shift of several degrees in the temperature at which maximum protein synthesis occurs and before it begins to be inhibited. In addition, there appears to be a protection of normal protein synthesis from heat shock inhibition when the temperature increase is gradual. An additional function of the heat shock phenomenon might be the protection of seedlings from death caused by extreme heat stress. The heat shock response appears to have relevance to plants in the field.  相似文献   

17.
植物热激蛋白的功能及其基因表达的调控   总被引:23,自引:0,他引:23  
本文介绍了植物热激蛋白的产生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展  相似文献   

18.
Heat shock proteins (HSPs) expression is commonly used as indicators of cellular stress in animals. However, very little is known about either the expression patterns of HSPs or their role in the stress-tolerance phenomenon in early life stages of fish. To this end, we examined the impact of food-deprivation (12 h), reduced oxygen levels (3.5 mg/L for 1 h) and heat shock (HS: + 5 °C for 1 h) on HSP70 and HSP90 protein expression in early life stages of the gilthead sea bream (Sparus aurata), a warm-water aquaculture species. Also, we investigated HSP70 and HSP90 response to food-deprivation (7 days) in early life stages of rainbow trout (Oncorhynchus mykiss), a cool-water aquaculture species, and the tolerance of this larvae to heat shock (either + 5 or + 10 °C for 1 h). Our results clearly demonstrate that food-deprivation enhances HSP70 and HSP90 protein expression in larvae of both species. In gilthead sea bream larvae, the stressors-induced HSP70 and HSP90 (only in the reduced oxygen group) protein expression returned to unstressed levels after 24 h recovery. In fed trout larvae, a + 5 °C heat shock did not elevate HSP70 and HSP90 expression, whereas 100% mortality was evident with a + 10 °C HS. However, food-deprived trout larvae, which had higher HSP70 and HSP90 protein content, survived HS and showed HS-dependent increases in HSP70, but not HSP90 expression. Overall, HSP70 and HSP90 protein expression in early life stages of fish have the potential to be used as markers of nutritional stress, while elevation of the tissue HSPs content may be used as a means to increase stress tolerance during larval rearing.  相似文献   

19.
本文介绍了植物热激蛋白的产:生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展。  相似文献   

20.
Heat shock proteins: endogenous modulators of apoptotic cell death   总被引:36,自引:0,他引:36  
The highly conserved heat shock proteins (HSPs) accumulate in cells exposed to heat and a variety of other stressful stimuli. HSPs, which function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and HSPs induced in response to stress appear to function at key regulatory points in the control of apoptosis. HSPs include antiapoptotic and proapoptotic proteins that interact with a variety of cellular proteins. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory HSPs, in particular HSP27 and HSP70, may participate in carcinogenesis. This review summarizes apoptosis-regulatory function of HSPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号