首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activins control many physiologic and pathophysiologic processes in multiple tissues and, like other TGF-beta superfamily members, signal via type II (ActRII/IIB) and type I (ALK4) receptor serine kinases. ActRII/IIB are promiscuous receptors known to bind at least a dozen TGF-beta superfamily ligands including activins, myostatin, several BMPs, and nodal. Here we utilize a new screening procedure to rapidly identify activin-A mutants with loss of signaling activity. Our goal was to identify activin-A mutants able to bind ActRII but unable to bind ALK4 and which would be, therefore, candidate type II activin receptor antagonists. Using the structure of BMP-2 bound to its type I receptor (ALK3) as a guide, we introduced mutations in the context of the inhibin betaA cDNA and assessed the signaling activity of the resulting mutant proteins. We identified several mutants in the finger (M91E, I105E, M108A) and wrist (activin A/activin C chimera, S60P, I63P) regions of activin-A with reduced signaling activity. Of these the M108A mutant displayed the lowest signaling activity while retaining wild-type-like affinity for ActRII. Unlike wild-type activin-A, the M108A mutant was unable to form a cross-linked complex with ALK4 in the presence of ActRII indicating that its ability to bind ALK4 was disrupted. This data suggested that the M108A mutant might be capable of modulating signaling of activin and related ligands. Indeed, the M108A mutant antagonized activin-A and myostatin, but not TGF-beta, signaling in 293T cells, indicating it may be generally capable of blocking ligands that signal via ActRII/IIB.  相似文献   

2.
The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.  相似文献   

3.
Bone morphogenetic proteins regulate many developmental processes during embryogenesis as well as tissue homeostasis in the adult. Signaling of bone morphogenetic proteins (BMPs) is accomplished by binding to two types of serine/threonine kinase transmembrane receptors termed type I and type II. Because a large number of ligands signal through a limited number of receptors, ligand-receptor interaction in the BMP superfamily is highly promiscuous, with a ligand binding to various receptors and a receptor binding many different BMP ligands. In this study we investigate the interaction of BMP-2 with its two high affinity type I receptors, BMP receptors IA (BMPR-IA) and BMPR-IB. Interestingly, 50% of the residues in the BMP-2 binding epitope of the BMPR-IA receptor are exchanged in BMPR-IB without a decrease in binding affinity or specificity for BMP-2. Our structural and functional analyses show that promiscuous binding of BMP-2 to both type I receptors is achieved by inherent backbone and side-chain flexibility as well as by variable hydration of the ligand-receptor interface enabling the BMP-2 surface to adapt to different receptor geometries. Despite the high degree of amino acid variability found in BMPR-IA and BMPR-IB binding equally to BMP-2, three single point missense mutations in the ectodomain of BMPR-IA cannot be tolerated. In juvenile polyposis syndrome these mutations have been shown to inactivate BMPR-IA. On the basis of our biochemical and biophysical analyses, we can show that the mutations, which are located outside the ligand binding epitope, alter the local or global fold of the receptor, thereby inactivating BMPR-IA and causing a loss of the BMP-2 tumor suppressor function in colon epithelial cells.  相似文献   

4.
BMPRII is a type II TGF-beta serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-beta type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-beta receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-beta receptors, may play a key role in ligand recognition.  相似文献   

5.
The TGF-beta superfamily of ligands and receptors stimulate cellular events in diverse processes ranging from cell fate specification in development to immune suppression. Activins define a major subgroup of TGF-beta ligands that regulate cellular differentiation, proliferation, activation and apoptosis. Activins signal through complexes formed with type I and type II serine/threonine kinase receptors. We have solved the crystal structure of activin A bound to the extracellular domain of a type II receptor, ActRIIB, revealing the details of this interaction. ActRIIB binds to the outer edges of the activin finger regions, with the two receptors juxtaposed in close proximity, in a mode that differs from TGF-beta3 binding to type II receptors. The dimeric activin A structure differs from other known TGF-beta ligand structures, adopting a compact folded-back conformation. The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface and suggests that diversity in the conformational arrangements of TGF-beta ligand dimers could influence cellular signaling processes.  相似文献   

6.
7.
The transforming growth factor beta (TGF-beta) superfamily, including the bone morphogenetic protein (BMP) and TGF-beta/activin A subfamilies, is regulated by secreted proteins able to sequester or present ligands to receptors. KCP is a secreted, cysteine-rich (CR) protein with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor to promote receptor-ligand interactions. Mice homozygous for a KCP null allele are hypersensitive to developing renal interstitial fibrosis, a disease stimulated by TGF-beta but inhibited by BMP7. In this report, the effects of KCP on TGF-beta/activin A signaling are examined. In contrast to the enhancing effect on BMPs, KCP inhibits both activin A- and TGF-beta1-mediated signaling through the Smad2/3 pathway. These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that direct binding of KCP to TGF-beta1 or activin A can block the interactions with prospective receptors. Consistent with this inhibitory effect, primary renal epithelial cells from KCP mutant cells are hypersensitive to TGF-beta and exhibit increased apoptosis, dissociation of cadherin-based cell junctions, and expression of smooth muscle actin. Furthermore, KCP null animals show elevated levels of phosphorylated Smad2 after renal injury. The ability to enhance BMP signaling while suppressing TGF-beta activation indicates a critical role for KCP in modulating the responses between these anti- and profibrotic cytokines in the initiation and progression of renal interstitial fibrosis.  相似文献   

8.
TGF-beta ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-beta ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.  相似文献   

9.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP induces its signal to regulate growth, differentiation, and apoptosis of various cells upon trimeric complex formation with two distinct type I and type II receptors on the cell surface: both are single-transmembrane serine/threonine kinase receptors. To identify the amino acid residues on BMP type I receptor responsible for its ligand binding, the structure-activity relationship of the extracellular ligand-binding domain of the BMP type IA receptor (sBMPR-IA) was investigated by alanine-scanning mutagenesis. The mutant receptors, as well as sBMPR-IA, were expressed as fusion proteins with thioredoxin in Escherichia coli, and purified using reverse phase high performance liquid chromatography (RP-HPLC) after digestion with enterokinase. Structural analysis of the parent protein and representative mutants in solution by CD showed no detectable differences in their folding structures. The binding affinity of the mutants to BMP-4 was determined by surface plasmon resonance biosensor. All the mutant receptors examined, with the exception of Y70A, displayed reduced affinities to BMP-4 with the rank order of decreases: I52A (17-fold) approximately F75A (15-fold) > T64A (4-fold) = T62A (4-fold) approximately E54A (3-fold). The decreases in binding affinity observed for the latter three mutants are mainly due to decreased association rate constants while alterations in rate constants both, for association and dissociation, result in the drastically reduced affinities for the former two mutants. These results allow us to conclude that sBMPR-IA recognizes the ligand using the concave face of the molecule. The major ligand-binding site of the BMP type IA receptor consists of Phe75 in loop 2 and Ile52, Glu54, Thr62 and Thr64 on the three-stranded beta-sheet. These findings should provide a general basis for the ligand/type I receptor recognition in the TGF-beta superfamily.  相似文献   

10.
The biology of the helminth parasite Schistosoma mansoni is closely integrated with that of its mammalian host. SmRK1, a divergent type I transforming growth factor-beta (TGF-beta) receptor of unknown ligand specificity, was previously identified as a candidate for a receptor that allows schistosomes to respond to host-derived growth factors. The TGF-beta family includes activin, bone morphogenetic proteins (BMPs), and TGF-beta, all of which can play crucial roles in metazoan development. The downstream signaling protein of receptors that respond to TGF-beta and activin is Smad2, whereas the receptors that respond to BMPs signal via Smad1. When a constitutively active mutant of SmRK1 was overexpressed with either schistosome Smad1 (SmSmad1) or SmSmad2, a receptor-dependent modulation of SmSmad phosphorylation and luciferase reporter activity occurred only with SmSmad2. To evaluate potential ligand activators of SmRK1, a chimeric receptor containing the extracellular domain of SmRK1 joined to the intracellular domain of the human type I TGF-beta receptor was used. The chimeric receptor bound radiolabeled TGF-beta and could activate a luciferase reporter gene in response to both TGF-beta 1 and TGF-beta 3 but not BMP7. Confirmatory results were obtained using full-length SmRK1. These experiments implicate TGF-beta as a ligand for SmRK1 and as a potential host-derived regulator of parasite growth and development.  相似文献   

11.
Crystal structure of the BMP-2-BRIA ectodomain complex   总被引:17,自引:0,他引:17  
Bone morphogenetic proteins (BMPs) belong to the large transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP-2 can induce ectopic bone and cartilage formation in adult vertebrates and is involved in central steps in early embryonal development in animals. Signaling by these cytokines requires binding of two types of transmembrane serine/threonine receptor kinase chains classified as type I and type II. Here we report the crystal structure of human dimeric BMP-2 in complex with two high affinity BMP receptor IA extracellular domains (BRIAec). The receptor chains bind to the 'wrist' epitopes of the BMP-2 dimer and contact both BMP-2 monomers. No contacts exist between the receptor domains. The model reveals the structural basis for discrimination between type I and type II receptors and the variability of receptor-ligand interactions that is seen in BMP-TGF-beta systems.  相似文献   

12.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

13.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

14.
15.
16.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGF-beta) superfamily of ligands, which regulate many mammalian physiologic and pathophysiologic processes. BMPs exert their effects through type I and type II serine/threonine kinase receptors and the Smad intracellular signaling pathway. Recently, the glycosylphosphatidylinositol (GPI)-anchored protein DRAGON was identified as a co-receptor for BMP signaling. Here, we investigate whether a homologue of DRAGON, repulsive guidance molecule (RGMa), is similarly involved in the BMP signaling pathway. We show that RGMa enhances BMP, but not TGF-beta, signals in a ligand-dependent manner in cell culture. The soluble extracellular domain of RGMa fused to human Fc (RGMa.Fc) forms a complex with BMP type I receptors and binds directly and selectively to radiolabeled BMP-2 and BMP-4. RGMa mediates BMP signaling through the classical BMP signaling pathway involving Smad1, 5, and 8, and it up-regulates endogenous inhibitor of differentiation (Id1) protein, an important downstream target of BMP signals. Finally, we demonstrate that BMP signaling occurs in neurons that express RGMa in vivo. These data are consistent with a role for RGMa as a BMP co-receptor.  相似文献   

17.
Bone morphogenetic proteins (BMPs) and other members of the TGF-beta superfamily are secreted signalling proteins determining the development, maintenance and regeneration of tissues and organs. These dimeric proteins bind, via multiple epitopes, two types of signalling receptor chains and numerous extracellular modulator proteins that stringently control their activity. Crystal structures of free ligands and of complexes with type I and type II receptor extracellular domains and with the modulator protein Noggin reveal structural epitopes that determine the affinity and specificity of the interactions. Modelling of a ternary complex BMP/(BMPR-IA(EC))2 / (ActR-II(EC))2 suggests a mechanism of receptor activation that does not rely on direct contacts between extracellular domains of the receptors. Mutational and interaction analyses indicate that the large hydrophobic core of the interface of BMP-2 (wrist epitope) with the type I receptor does not provide a hydrophobic hot spot for binding. Instead, main chain amide and carbonyl groups that are completely buried in the contact region represent major binding determinants. The affinity between ligand and receptor chains is probably strongly increased by two-fold interactions of the dimeric ligand and receptor chains that exist as homodimers in the membrane (avidity effects). BMP muteins with disrupted epitopes for receptor chains or modulator proteins provide clues for drug design and development.  相似文献   

18.
19.
The transforming growth factor beta (TGF-beta) superfamily includes bone morphogenetic proteins, activins and TGF-betasensu stricto (s.s). These ligands, which transduce their signal through a heteromeric complex of type I and type II receptors, have been shown to play a key role in numerous biological processes including early embryonic development in both deuterostomes and ecdyzozoans. Lophochotrozoans, the third major group of bilaterian animals, have remained in the background of the molecular survey of metazoan development. We report the cloning and functional study of the central part of the BMP pathway machinery in the bivalve mollusc Crassostrea gigas (Cg-BMPR1 type I receptor and Cg-TGFbetasfR2 type II receptor), showing an unusual functional mode of signal transduction for this superfamily. The use of the zebrafish embryo as a reporter organism revealed that Cg-BMPR1, Cg-TGFbetasfR2, Cg-ALR I, an activin Type I receptor or their dominant negative acting truncated forms, when overexpressed during gastrulation, resulted in a range of phenotypes displaying severe disturbance of anterioposterior patterning, due to strong modulations of ventrolateral mesoderm patterning. The results suggest that Cg-BMPR1, and to a certain degree Cg-TGFbetasfR2 proteins, function in C. gigas in a similar way to their zebrafish orthologues. Finally, based on phylogenetic analyses, we propose an evolutionary model within the complete TGF-beta superfamily. Thus, evidence provided by this study argues for a possible conserved endomesoderm/ectomesoderm inductive mechanism in spiralians through an ancestral BMP/activin pathway in which the singular, promiscuous and probably unique Cg-TGFbetasfR2 would be the shared type II receptor interface for both BMP and activin ligands.  相似文献   

20.
Activin receptor type IIB (ActRIIB), a type II TGF-beta serine/threonine kinase receptor, is integral to the activin and myostatin signaling pathway. Ligands such as activin and myostatin bind to activin type II receptors (ActRIIA, ActRIIB), and the GS domains of type I receptors are phosphorylated by type II receptors. Myostatin, a negative regulator of skeletal muscle growth, is regarded as a potential therapeutic target and binds to ActRIIB effectively, and to a lesser extent, to ActRIIA. The high-resolution structure of human ActRIIB kinase domain in complex with adenine establishes the conserved bilobal architecture consistent with all other catalytic kinase domains. The crystal structure reveals that the adenine has a considerably different orientation from that of the adenine moiety of ATP observed in other kinase structures due to the lack of an interaction by ribose-phosphate moiety and the presence of tautomers with two different protonation states at the N9 nitrogen. Although the Lys217-Glu230 salt bridge is absent, the unphosphorylated activation loop of ActRIIB adopts a conformation similar to that of the fully active form. Unlike the type I TGF-beta receptor, where a partially conserved Ser280 is a gatekeeper residue, the AcRIIB structure possesses Thr265 with a back pocket supported by Phe247. Taken together, these structural features provide a molecular basis for understanding the coupled activity and recognition specificity for human ActRIIB kinase domain and for the rational design of selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号