首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

5.
6.
7.
Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function   总被引:2,自引:0,他引:2  
The mouse NK1.1 Ag originally defined as NK cell receptor (NKR)-P1C (CD161) mediates NK cell activation. Here, we show that another member of the mouse CD161 family, NKR-P1B, represents a novel NK1.1 Ag. In contrast to NKR-P1C, which functions as an activating receptor, NKR-P1B inhibits NK cell activation. Association of NKR-P1B with Src homology 2-containing protein tyrosine phosphatase-1 provides a molecular mechanism for this inhibition. The existence of these two NK1.1 Ags with opposite functions suggests a potential role for NKR-P1 molecules, such as those of the Ly-49 gene family, in regulating NK cell function.  相似文献   

8.
NK and NKT cells play a major role in both innate immunity and in influencing the development of adaptive immune responses. CD161 (human NKR-P1A), a protein encoded in the NK gene complex, is a major phenotypic marker of both these cell types and is thought to be involved in the regulation of NK and NKT cell function. However, the mechanisms of action and signaling pathways of CD161 are poorly understood. To identify molecules able to interact with the cytoplasmic tail of human CD161 (NKR-P1A), we have conducted a yeast two-hybrid screen and identified acid sphingomyelinase as a novel intracellular signaling pathway linked to CD161. mAb-mediated cross-linking of CD161, in both transfectants and primary human NK cells, triggers the activation of acid, but not neutral sphingomyelinase. The sphingomyelinases represent the catabolic pathway for N-acyl-sphingosine (ceramide) generation, an emerging second messenger with key roles in the induction of apoptosis, proliferation, and differentiation. These data therefore define a novel signal transduction pathway for the CD161 (NKR-P1A) receptor and provide fresh insights into NK and NKT cell biology.  相似文献   

9.
The NK cell receptor protein 1 (NKR-P1) (CD161) molecules represent a family of type II transmembrane C-type lectin-like receptors expressed predominantly by NK cells. Despite sharing a common NK1.1 epitope, the mouse NKR-P1B and NKR-P1C receptors possess opposing functions in NK cell signaling. Engagement of NKR-P1C stimulates cytotoxicity of target cells, Ca2+ flux, phosphatidylinositol turnover, kinase activity, and cytokine production. In contrast, NKR-P1B engagement inhibits NK cell cytotoxicity. Nonetheless, it remains unclear how different signaling outcomes are mediated at the molecular level. Here, we demonstrate that both NKR-P1B and NKR-P1C associate with the tyrosine kinase, p56(lck). The interaction is mediated through the di-cysteine CxCP motif in the cytoplasmic domains of NKR-P1B/C. Disrupting this motif leads to abrogation of both stimulatory and inhibitory NKR-P1 signals. In addition, mutation of the consensus ITIM (LxYxxL) in NKR-P1B abolishes both its Src homology 2-containing protein tyrosine phosphatase-1 recruitment and inhibitory function. Strikingly, engagement of NKR-P1C on NK cells obtained from Lck-deficient mice failed to induce NK cytotoxicity. These results reveal a role for Lck in the initiation of NKR-P1 signals, and demonstrate a requirement for the ITIM in NKR-P1-mediated inhibition.  相似文献   

10.
11.
12.
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-gamma production of freshly isolated NK cells and enhanced the proliferation and IFN-gamma production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-gamma-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.  相似文献   

13.
The intestinal lymphoid compartment of the rat is large and diverse, but the phenotype and functions of its constituent cell populations are not fully characterized. Using new methodology for the isolation and purification of rat intestinal intraepithelial lymphocytes (IELs), we previously identified a population of alphabeta- and gammadelta-TCR- NKR-P1A+ NK cells. These cells were almost completely restricted to the CD4-CD8- IEL population, and unlike peripheral NK cells in the rat, they were CD2-. We now report that rat intraepithelial NK (IENK) and peripheral NK cells are similar in morphology, in their ability to lyse NK-sensitive targets, and in their ability to suppress a one-way mixed lymphocyte culture. In contrast, however, intraepithelial and splenic NK cells differ markedly in two respects. First, IENK cells express high levels of ADP-ribosyltransferase 2 (a marker of regulatory T cells in the rat) and CD25, whereas peripheral NK cells do not. Second, unlike splenic NK cells, a substantial fraction of IENK cells appear to spontaneously secrete IL-4 and/or IFN-gamma. We conclude that the rat IEL compartment harbors a large population of NKR-P1A+CD3- cells that function as NK cells but display an activated phenotype and unusual cytokine profile that clearly distinguish them from splenic NK cells. Their phenotypic and functional characteristics suggest that these distinctive IENK cells may participate in the regulation of mucosal immunity.  相似文献   

14.
It is important to understand which molecules are relevant for linking innate and adaptive immune cells. In this study, we show that OX40 ligand is selectively induced on IL-2, IL-12, or IL-15-activated human NK cells following stimulation through NKG2D, the low affinity receptor for IgG (CD16) or killer cell Ig-like receptor 2DS2. CD16-activated NK cells costimulate TCR-induced proliferation, and IFN-gamma produced by autologous CD4+ T cells and this process is dependent upon expression of OX40 ligand and B7 by the activated NK cells. These findings suggest a novel and unexpected link between the natural and specific immune responses, providing direct evidence for cross-talk between human CD4+ T cells and NK receptor-activated NK cells.  相似文献   

15.
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.  相似文献   

16.
The vast diversity of the T cell repertoire renders the adaptive immune response capable of recognizing a broad spectrum of potential antigenic peptides. However, certain T cell rearrangements are conserved for recognition of specific pathogens, as is the case for TCRgammadelta cells. In addition, an immunoregulatory class of T cells expressing the NK receptor protein 1A (CD161) responds to nonpeptide Ags presented on the MHC-like CD1d molecule. The effect of HIV-1 infection on these specialized T cells in the thymus was studied using the SCID-hu mouse model. We were able to identify CD161-expressing CD3(+) cells but not the CD1d-restricted invariant Valpha24/Vbeta11/CD161(+) NK T cells in the thymus. A subset of TCRgammadelta cells and CD161-expressing thymocytes express CD4, CXCR4, and CCR5 during development in the thymus and are susceptible to HIV-1 infection. TCRgammadelta thymocytes were productively infectable by both X4 and R5 virus, and thymic HIV-1 infection induced depletion of CD4(+) TCRgammadelta cells. Similarly, CD4(+)CD161(+) thymocytes were depleted by thymic HIV-1 infection, leading to enrichment of CD4(-)CD161(+) thymocytes. Furthermore, compared with the general CD4-negative thymocyte population, CD4(-)CD161(+) NK T thymocytes exhibited as much as a 27-fold lower frequency of virus-expressing cells. We conclude that HIV-1 infection and/or disruption of cells important in both innate and acquired immunity may contribute to the overall immune dysfunction seen in HIV-1 disease.  相似文献   

17.
Both innate and adaptive immune responses play an important role in the recovery of the host from viral infections. In the present report, a subset of cells coexpressing CD8 and NKR-P1C (NK1.1) was found in the lungs of mice infected with influenza A virus. These cells were detected at low numbers in the lungs of uninfected mice, but represented up to 10% of the total CD8(+) T cell population at day 10 postinfection. Almost all of the CD8(+)NK1.1(+) cells were CD8alphabeta(+)CD3(+)TCRalphabeta(+) and a proportion of these cells also expressed the NK cell-associated Ly49 receptors. Interestingly, up to 30% of these cells were virus-specific T cells as determined by MHC class I tetramer staining and by intracellular staining of IFN-gamma after viral peptide stimulation. Moreover, these cells were distinct from conventional NKT cells as they were also found at increased numbers in influenza-infected CD1(-/-) mice. These results demonstrate that a significant proportion of CD8(+) T cells acquire NK1.1 and other NK cell-associated molecules, and suggests that these receptors may possibly regulate CD8(+) T cell effector functions during viral infection.  相似文献   

18.
We have previously shown that rat allo-selective cells of the CD2+CD5- phenotype were generated in Brown Norway (BN) rats after immunization with allogeneic Wistar/Furth (WF) cells, whereas immunization with semi-allogeneic F1 (WF/BN) cells generated CD2+CD5+ effector T cells. We now report that the allo-selective CD2+CD5- lymphocytes lacked expression of intact CD3 complexes and expressed NKR-P1 molecules although lower as compared to classical NK cells, implicating that these lymphocytes constitute a subset of NK cells. The CD5+ T cells were not cytolytically active in BN rats immunized with WF cells indicating an intersubset regulation with mutually exclusive activation of either allo-selective T cells or allo-selective NK cells. Cold target inhibition showed that lysis of both allogeneic target cells and NK-sensitive target cells was mediated by the same NKR-P1 intermediate effector cells. These NK cells lysed WF but not allogeneic Fischer 344 or autologous BN target cells, indicating selective recognition of an allogeneic determinant. Semiallogeneic F1 (WF/BN) target cells were not lysed. Furthermore, target cells from F1 (WF/BN) x WF back-cross hybrids lacking expression of RT1n (self-MHC class I) were susceptible to lysis, whereas back-cross hybrids expressing RT1n were protected from lysis, indicating that self-MHC molecules conferred protection from lysis. These findings implicate the existence of NKR-P1intermediate and NKR-P1high NK cell subsets with different regulation and function in vivo.  相似文献   

19.
The impairment of NK cell functions in the course of HIV infection contributes to a decreased resistance against HIV and other pathogens. We analyzed the proportion of mature and immature NK cell subsets, and measured subsets of IFN-gamma and TNF-alpha-producing NK and T cells in viremic or therapy-suppressed HIV-infected subjects, and noninfected control donors. Viremic HIV(+) individuals had significantly lower proportions of mature CD3(-)/CD161(+)/CD56(+) NK cells and of IFN-gamma-producing NK cells compared with noninfected donors, independent of CD4(+) T cell counts. HIV-infected subjects with undetectable viral load recovered mature CD3(-)/CD161(+)/CD56(+) NK cells and cytotoxicity against tumor (K562) and HSV-infected target cells to percentages comparable with those of uninfected individuals, but their NK cells remained impaired in their ability to produce IFN-gamma. In parallel to these ex vivo findings, in vitro NK cell differentiation of CD34-positive cord blood precursors in the presence of R5 or X4 HIV-1 resulted in the production of NK cells with a normal mature phenotype, but lacking the ability to produce IFN-gamma, whereas coculture of uninfected PBMC with HIV failed to affect mature NK cell properties or IFN-gamma secretion. Altogether, our findings support the hypothesis that mature NK cell phenotype may be uncoupled from some mature functions following highly active antiretroviral therapy-mediated suppression of HIV-1, and indicate that relevant innate immune functions of NK cell subsets may remain altered despite effective viral suppression following antiretroviral treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号