首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the process of receptor-mediated endocytosis, the fusion of endosomes in vitro is known to be inhibited by wortmannin or LY294002; inhibitors of phosphoinositide 3-kinase (PI3K), suggesting that the activity of PI3K is required for the fusion of early endosomes. In macropinocytosis, a process of bulk fluid-phase endocytosis, however, it remains unclear whether PI3K is required for the fusion of macropinosomes, since the macropinosome formation is inhibited by the PI3K inhibitors. In this study, we examined the effect of 3-methlyadenine (3-MA), which shows a distinct specificity to the PI3K classes from wortmannin and LY294002, on the macropinosome formation and fusion in EGF-stimulated A431 cells. Unlike wortmannin or LY294002, 3-MA did not inhibit the uptake of fluorescent dextran by macropinocytosis. However, the fusion of macropinosomes was inhibited by 3-MA. By imaging of live-cells expressing fluorescent protein-fused tandem FYVE domains, we found that PtdIns(3)P appeared on the macropinosomal membrane shortly after the closure of macropinocytic cups and remained on macropinosomes even at 60-min age. The production of PtdIns(3)P and the recruitment of EEA1 to macropinosomes were abolished by the 3-MA treatment. Therefore, it is likely that 3-MA impairs recruitment of EEA1 by inhibiting PtdIns(3)P production and resultantly blocks the fusion of macropinosomes. These results suggest that the local production of PtdIns(3)P implicates the fusion of macropinosomes via EEA1 as well as conventional early endosomes. However, the long association of PtdIns(3)P with macropinosomes may well be a cell-type specific feature of A431 cells.  相似文献   

2.
Previously, we reported that fluid-phase endocytosis of native LDL by PMA-activated human monocytederived macrophages converted these macrophages into cholesterol-enriched foam cells (Kruth, H. S., Huang, W., Ishii, I., and Zhang, W. Y. (2002) J. Biol. Chem. 277, 34573-34580). Uptake of fluid by cells can occur either by micropinocytosis within vesicles (<0.1 microm diameter) or by macropinocytosis within vacuoles ( approximately 0.5-5.0 microm) named macropinosomes. The current investigation has identified macropinocytosis as the pathway for fluid-phase LDL endocytosis and determined signaling and cytoskeletal components involved in this LDL endocytosis. The phosphatidylinositol 3-kinase inhibitor, LY294002, which inhibits macropinocytosis but does not inhibit micropinocytosis, completely blocked PMA-activated macrophage uptake of fluid and LDL. Also, nystatin and filipin, inhibitors of micropinocytosis from lipid-raft plasma membrane domains, both failed to inhibit PMA-stimulated macrophage cholesterol accumulation. Time-lapse video phase-contrast microscopy and time-lapse digital confocal-fluorescence microscopy with fluorescent DiI-LDL showed that PMA-activated macrophages took up LDL in the fluid phase by macropinocytosis. Macropinocytosis of LDL depended on Rho GTPase signaling, actin, and microtubules. Bafilomycin A1, the vacuolar H+-ATPase inhibitor, inhibited degradation of LDL and caused accumulation of undegraded LDL within macropinosomes and multivesicular body endosomes. LDL in multivesicular body endosomes was concentrated >40-fold over its concentration in the culture medium consistent with macropinosome shrinkage by maturation into multivesicular body endosomes. Macropinocytosis of LDL taken up in the fluid phase without receptor-mediated binding of LDL is a novel endocytic pathway that generates macrophage foam cells. Macropinocytosis in macrophages and possibly other vascular cells is a new pathway to target for modulating foam cell formation in atherosclerosis.  相似文献   

3.
Endocytosis of signaling receptors, EGF receptor in particular, starting at the plasma membrane and finishing in perinuclear lysosomes entails endosome multiple interactions with homotypic endosomes and vesicles of other origin (lysosomes, trans-Golgi network), which results in changes of endosome size. A distinctive feature of the endocytic pathway is endosome translocation from the cell periphery to the juxtanuclear region. Thus, endocytosis is a highly dynamic process developing in time and space. One of the most productive approaches to studying endocytosis regulation is light immunofluorescent microscopy, which allows determining the endocytosis dynamics at the level of single or several cells. Different effects that influence endocytic regulator components are inevitably reflected on the dynamics on endosome size and/or its translocation. This makes it possible to reveal both primary and secondary components of the regulatory machinery. However, visual determination of such effects is often subjective and does not allow statistically reliable data to be obtained. Comparison of different experiments, even in the case of the same series, also may be complicated. In this work, we use such parameters as apparent vesicle size (diameter, area, or volume) and vesicle number per cell to provide quantitative estimation of fusion efficacy. Moreover, we propose a coefficient reflecting vesicle clusterization in the perinuclear region as a measure of their translocation along microtubules toward the nucleus (D clust). We present the application these parameters using EGF receptor endocytosis as an example.  相似文献   

4.
The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.  相似文献   

5.
Virions of the type 1 human immunodeficiency virus (HIV-1) can enter target cells by fusion or endocytosis, with sharply different functional consequences. Fusion promotes productive infection of the target cell, while endocytosis generally leads to virion inactivation in acidified endosomes or degradation in lysosomes. Virion fusion and endocytosis occur equally in T cells, but these pathways have been regarded as independent because endocytosis of HIV virions requires neither CD4 nor CCR5/CXCR4 engagement in HeLa-CD4 cells. Using flow cytometric techniques to assess the binding and entry of green fluorescent protein (GFP)-Vpr-labeled HIV virions into primary peripheral blood mononuclear cells, we have found that HIV fusion and endocytosis are restricted to the CD4-expressing subset of cells and that both pathways commonly require the initial binding of HIV virions to surface CD4 receptors. Blockade of CXCR4-tropic HIV virion fusion with AMD3100, a CXCR4-specific entry inhibitor, increased virion entry via the endocytic pathway. Similarly, inhibition of endosome acidification with bafilomycin A1, concanamycin A, or NH(4)Cl enhanced entry via the fusion pathway. Although fusion remained dependent on CD4 and chemokine receptor binding, the endosome inhibitors did not alter surface expression of CD4 and CXCR4. These results suggest that fusion in the presence of the endosome inhibitors likely occurs within nonacidified endosomes. However, the ability of these inhibitors to impair vesicle trafficking from early to late endosomes in some cells could also increase the recycling of these virion-containing endosomes to the cell surface, where fusion occurs. In summary, our results reveal an unexpected, CD4-mediated reciprocal relationship between the pathways governing HIV virion fusion and endocytosis.  相似文献   

6.
Pseudomonas exotoxin (PE) is a cytotoxin which, after endocytosis, is delivered to the cytosol where it inactivates protein synthesis. Using diaminobenzidine cytochemistry, we found over 94% of internalized PE in transferrin (Tf) -positive endosomes of lymphocytes. When PE translocation was examined in a cell-free assay using purified endocytic vesicles, more than 40% of endosomal 125I-labeled PE was transported after 2 h at 37°C, whereas a toxin inactivated by point mutation in its translocation domain was not translocated. Sorting of endosomes did not allow cell-free PE translocation, whereas active PE transmembrane transport was observed after > 10 min of endocytosis when PE and fluorescent-Tf were localized by confocal immunofluorescence microscopy within a rab5-positive and rab4- and rab7-negative recycling compartment in the pericentriolar region of the cell. Accordingly, when PE delivery to this structure was inhibited using a 20°C endocytosis temperature, subsequent translocation from purified endosomes was impaired. Translocation was also inhibited when endosomes were obtained from cells labeled with PE in the presence of brefeldin A, which caused fusion of translocation-competent recycling endosomes with translocation-incompetent sorting elements. No PE processing was observed in lymphocyte endosomes, the full-sized toxin was translocated and recovered in an enzymatically active form. ATP hydrolysis was found to directly provide the energy required for PE translocation. Inhibitors of endosome acidification (weak bases, protonophores, or bafilomycin A1) when added to the assay did not significantly affect 125I-labeled PE translocation, demonstrating that this transport is independent of the endosome-cytosol pH gradient. Nevertheless, when 125I-labeled PE endocytosis was performed in the presence of one of these molecules, translocation from endosomes was strongly inhibited, indicating that exposure to acidic pH is a prerequisite for PE membrane traversal. When applied during endocytosis, treatments that protect cells against PE intoxication (low temperatures, inhibitors of endosome acidification, and brefeldin A) impaired 125I-labeled PE translocation from purified endosomes. We conclude that PE translocation from a late receptor recycling compartment is implicated in the lymphocyte intoxication procedure.  相似文献   

7.
Annexin 2 is a Ca(2+) binding protein that binds to and aggregates secretory vesicles at physiological Ca(2+) levels [1] and that also associates Ca(2+) independently with early endosomes [2, 3]. These properties suggest roles in both exocytosis and endocytosis, but little is known of the dynamics of Annexin 2 distribution in live cells during these processes. We have used evanescent field microscopy to image Annexin 2-GFP in live, secreting rat basophilic leukemia cells and in cells performing pinocytosis. Although we found no evidence of Annexin 2 involvement in exocytosis, we observed an enrichment of Annexin 2-GFP in actin tails propeling macropinosomes. The association of Annexin 2-GFP with rocketing macropinosomes was specific because Annexin 2-GFP was absent from the actin tails of rocketing Listeria. This finding suggests that the association of Annexin 2 with macropinocytic rockets requires native pinosomal membrane. Annexin 2 is necessary for the formation of macropinocytic rockets since overexpression of a dominant-negative Annexin 2 construct abolished the formation of these structures. The same construct did not prevent the movement of Listeria in infected cells. These results show that recruitment of Annexin 2 to nascent macropinosome membranes 16656is an essential prerequisite for actin polymerization-dependent vesicle locomotion.  相似文献   

8.
The GTPase Rab5a regulates the homotypic and heterotypic fusion of membranous organelles during the early stages of endocytosis. Many of the molecules which regulate the Rab5a cycle of association with membranes, activation, deactivation and dissociation are known. However, the extent to which these molecular scale activities are coordinated on membranes to affect the behavior of individual organelles has not been determined. This study used novel Förster resonance energy transfer (FRET) microscopic methods to analyze the Rab5a cycle on macropinosomes, which are large endocytic vesicles that form in ruffled regions of cell membranes. In Cos‐7 cells and mouse macrophages stimulated with growth factors, Rab5a activation followed immediately after its recruitment to newly formed macropinosomes. Rab5a activity increased continuously and uniformly over macropinosome membranes then decreased continuously, with Rab5a deactivation preceding dissociation by 1–12 min. Although the maximal levels of Rab5a activity were independent of organelle size, Rab5a cycles were longer on larger macropinosomes, consistent with an integrative activity governing Rab5a dynamics on individual organelles. The Rab5a cycle was destabilized by microtubule depolymerization and by bafilomycin A1. Overexpression of activating and inhibitory proteins indicated that active Rab5a stabilized macropinosomes. Thus, overall Rab5a activity on macropinosomes is coordinated by macropinosome structure and physiology.  相似文献   

9.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

10.
BACKGROUND: In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS: Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS: Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.  相似文献   

11.
Positively charged nanogold was used as a probe to trace the internalization of plasma membrane (PM) domains carrying negatively charged residues at an ultrastructural level. The probe revealed distinct endocytic pathways within tobacco protoplasts and allowed the morphology of the organelles involved in endocytosis to be characterized in great detail. Putative early endosomes with a tubulo-vesicular structure, similar to that observed in animal cells, are described and a new compartment, characterized by interconnected vesicles, was identified as a late endosome using the Arabidopsis anti-syntaxin family Syp-21 antibody. Endocytosis dissection using Brefeldin A (BFA), pulse chase, temperature- and energy-dependent experiments combined with quantitative analysis of nanogold particles in different compartments, suggested that recycling to the PM predominated with respect to degradation. Further experiments using ikarugamycin (IKA), an inhibitor of clathrin-dependent endocytosis, and negatively charged nanogold confirmed that distinct endocytic pathways coexist in tobacco protoplasts.  相似文献   

12.
We addressed the role of Src on cortical actin dynamics and polarized endocytosis in MDCK cells harboring a thermosensitive v-src mutant. Shifting monolayers established at 40 degrees C (non-permissive temperature) to 34 degrees C (permissive temperature) rapidly reactivated v-Src kinase, but tight junctions and cell polarity resisted for >6 h. At this interval, activated v-src was recruited on apical vesicles, induced cortactin-associated apical circular ruffles productive of macropinosomes, thereby accelerating apical pinocytosis by approximately fivefold. Ruffling and macropinosome formation were selectively abrogated by inhibitors of actin polymerization, phosphoinositide 3-kinase, phospholipase C, and phospholipase D, which all returned apical pinocytosis to the level observed at 40 degrees C, underscoring the distinct control of apical micropinocytosis and macropinocytosis. Src promoted microtubule-dependent fusion of macropinosomes to the apical recycling endosome (ARE), causing its strong vacuolation. However, preservation of tubulation and apical polarity indicated that its function was not affected. The ARE was labeled for v-src, Rab11, and rabankyrin-5 but not early endosome antigen 1, thus distinguishing two separate Rab5-dependent apical pathways. The mechanisms of Src-induced apical ruffling and macropinocytosis could shed light on the triggered apical enteroinvasive pathogens entry and on the apical differentiation of osteoclasts.  相似文献   

13.
The small GTPase Rab5 is a key regulator of clathrin-mediated endocytosis. On early endosomes, within a spatially restricted domain enriched in phosphatydilinositol-3-phosphate [PI(3)P], Rab5 coordinates a complex network of effectors that functionally cooperate in membrane tethering, fusion, and organelle motility. Here we discovered a novel PI(3)P-binding Rab5 effector, Rabankyrin-5, which localises to early endosomes and stimulates their fusion activity. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid-phase uptake, whereas its downregulation inhibits these processes. In polarised epithelial cells, this function is primarily restricted to the apical membrane. Rabankyrin-5 localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells, and its overexpression in polarised Madin-Darby canine kidney cells stimulates apical but not basolateral, non-clathrin-mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)pinocytosis, our studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, its active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells.  相似文献   

14.

Background

Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation.

Methodology/Principal Findings

We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/−3.19 macropinosomes), SNX5 (36.99+/−4.48 macropinosomes), SNX9 (37.55+/−2.4 macropinosomes), SNX18 (88.2+/−8 macropinosomes), SNX33 (65.25+/−6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/−1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P3 levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/−7.13 and 91.4+/−6.37 macropinosomes respectively (p<0.05).

Conclusions/Significance

SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P3 levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.  相似文献   

15.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

16.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

17.
《The Journal of cell biology》1993,121(5):1011-1020
Macropinosomes formed by addition of recombinant macrophage colony- stimulating factor (rM-CSF) to mouse macrophages migrate centripetally and shrink, remaining detectable by phase microscopy for up to 15 min. This longevity allowed us to study how macropinosomes age. Macropinosomes were pulse labeled for 1 min with fixable fluorescein dextran (FDx10f), a probe for fluid phase pinocytosis, and chased for various times. To quantify changes in their antigenic profile, pulse- labeled macropinosomes of different ages were fixed and stained for immunofluorescence with a panel of antibodies specific for the transferrin receptor (TfR), the late endosome-specific, GTP-binding protein rab 7 or lysosomal glycoprotein A (lgp-A), and the percentage of antibody positive, FDx10f-labeled macropinosomes was scored. Some newly formed macropinosomes were positive for TfR, but few were rab 7 or lgp-A-positive. With intermediate chase times (2-4 min), staining for rab 7 and lgp-A increased to > 60%, while TfR staining declined. After a long chase (9-12 min), rab 7 staining returned to low levels while lgp-A staining remained at a high level. Thus, macropinosomes matured by progressive acquisition and loss of characteristic endocytic vesicle markers. However, unlike a maturation process, their merger with the tubular lysosomal compartment more nearly resembled the incorporation of a transient vesicle into a pre-existing, stable compartment. Shortly after their formation, FDx10f-labeled macropinosomes contacted and merged with Texas red dextran (TRDx10)- labeled tubular lysosomes. This occurred in two steps: macropinosomes acquired lgp-A first, and then several minutes later the cation- independent mannose-6-phosphate receptor (CI-MPR) and markers of lysosomal content (cathepsin L or pre-loaded TRDx10), all apparently derived from tubular lysosomes. Thus, macropinosome progress through macrophages showed features of both the maturation and vesicle shuttle models of endocytosis, beginning with a maturation process and ending by merger into a stable, resident lysosomal compartment.  相似文献   

18.
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.  相似文献   

19.
The transfer of molecules from the cell surface to the early endosomes is mediated by preendosomal vesicles. These vesicles, which have pinched off completely from the plasma membrane but not yet fused with endosomes, form the earliest compartment along the endocytic route. Using a new assay to distinguish between free and cell surface connected vesicle profiles, we have characterized the preedosomal compartment ultrastructurally. Our basic experimental setup was labeling of the entire cell surface at 4 degrees C with Con A-gold, warming of the cells to 37 degrees C to allow endocytosis, followed by replacing incubation medium with fixative, all within either 30 or 60 s. Then the fixed cells were incubated with anti-Con A-HRP to distinguish truly free (gold labeled) endocytic vesicles from surface-connected structures. Finally, analysis of thin (20-30 nm) serial sections and quantification of vesicle diameters were carried out. Based on this approach it is shown that the preendosomal compartment comprises both clathrin-coated and non-coated endocytic vesicles with approximately the same frequency but with distinct diameter distributions, the average noncoated vesicle being smaller (95 nm) than the average coated one (110 nm). In parallel experiments, using an anti-transferrin receptor gold-conjugate as a specific marker for clathrin-dependent endocytosis it is also shown that uncoating of coated vesicles plays only a minor role for the total frequency of noncoated vesicles. Furthermore, after perturbation of clathrin-dependent endocytosis by potassium depletion where uptake of transferrin is blocked, noncoated endocytic vesicles with Con A-gold, but not coated vesicles, exist already after 30 and 60 s. Finally, it is shown that the existence of small, free vesicles in the short-time experiments cannot be ascribed to recycling from the early endosomes.  相似文献   

20.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号