首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryanodine and inositol 1,4,5-trisphosphate (IP(3)) receptors - two related families of Ca(2+) channels responsible for release of Ca(2+) from intracellular stores [1] - are biphasically regulated by cytosolic Ca(2+) [2] [3] [4]. It is thought that the resulting positive feedback allows localised Ca(2+)-release events to propagate regeneratively, and that the negative feedback limits the amplitude of individual events [5] [6]. Stimulation of IP(3) receptors by Ca(2+) occurs through a Ca(2+)-binding site that becomes exposed only after IP(3) has bound to its receptor [7] [8]. Here, we report that rapid inhibition of IP(3) receptors by Ca(2+) occurs only if the receptor has not bound IP(3). The IP(3) therefore switches its receptor from a state in which only an inhibitory Ca(2+)-binding site is accessible to one in which only a stimulatory site is available. This regulation ensures that Ca(2+) released by an active IP(3) receptor may rapidly inhibit its unliganded neighbours, but it cannot terminate the activity of a receptor with IP(3) bound. Such lateral inhibition, which is a universal feature of sensory systems where it improves contrast and dynamic range, may fulfil similar roles in intracellular Ca(2+) signalling by providing increased sensitivity to IP(3) and allowing rapid graded recruitment of IP(3) receptors.  相似文献   

2.
We examined the activation and regulation of calcium release-activated calcium current (I(crac)) in RBL-1 cells in response to various Ca(2+) store-depleting agents. With [Ca(2+)](i) strongly buffered to 100 nM, I(crac) was activated by ionomycin, thapsigargin, inositol 1,4,5-trisphosphate (IP(3)), and two metabolically stable IP(3) receptor agonists, adenophostin A and L-alpha-glycerophospho-D-myoinositol-4,5-bisphosphate (GPIP(2)). With minimal [Ca(2+)](i) buffering, with [Ca(2+)](i) free to fluctuate I(crac) was activated by ionomycin, thapsigargin, and by the potent IP(3) receptor agonist, adenophostin A, but not by GPIP(2) or IP(3) itself. Likewise, when [Ca(2+)](i) was strongly buffered to 500 nM, ionomycin, thapsigargin, and adenophostin A did and GPIP(2) and IP(3) did not activate detectable I(crac). However, with minimal [Ca(2+)](i) buffering, or with [Ca(2+)](i) buffered to 500 nM, GPIP(2) was able to fully activate detectable I(crac) if uptake of Ca(2+) intracellular stores was first inhibited. Our findings suggest that when IP(3) activates the IP(3) receptor, the resulting influx of Ca(2+) quickly inactivates the receptor, and Ca(2+) is re-accumulated at sites that regulate I(crac). Adenophostin A, by virtue of its high receptor affinity, is resistant to this inactivation. Comparison of thapsigargin-releasable Ca(2+) pools following activation by different IP(3) receptor agonists indicates that the critical regulatory pool of Ca(2+) may be very small in comparison to the total IP(3)-sensitive component of the endoplasmic reticulum. These findings reveal new and important roles for IP(3) receptors located on discrete IP(3)-sensitive Ca(2+) pools in calcium feedback regulation of I(crac) and capacitative calcium entry.  相似文献   

3.
IP3 receptors and their regulation by calmodulin and cytosolic Ca2+   总被引:1,自引:0,他引:1  
Taylor CW  Laude AJ 《Cell calcium》2002,32(5-6):321-334
Inositol 1,4,5-trisphosphate (IP(3)) receptors are tetrameric intracellular Ca(2+) channels, the opening of which is regulated by both IP(3) and Ca(2+). We suggest that all IP(3) receptors are biphasically regulated by cytosolic Ca(2+), which binds to two distinct sites. IP(3) promotes channel opening by controlling whether Ca(2+) binds to the stimulatory or inhibitory sites. The stimulatory site is probably an integral part of the receptor lying just upstream of the pore region. Inhibition of IP(3) receptors by Ca(2+) probably requires an accessory protein, which has not yet been unequivocally identified, but calmodulin is a prime candidate. We speculate that one lobe of calmodulin tethers it to the IP(3) receptor, while the other lobe can bind Ca(2+) and then interact with a second site on the receptor to cause inhibition.  相似文献   

4.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   

5.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

6.
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.  相似文献   

7.
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.  相似文献   

8.
Physical interaction between transient receptor potential (Trp) channels and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) has been presented as a candidate mechanism for the activation of store-mediated Ca(2+) entry. The role of a human homologue of Drosophila transient receptor potential channel, hTrp1, in the conduction of store-mediated Ca(2+) entry was examined in human platelets. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 557-571 of hTrp1, inhibited both store depletion-induced Ca(2+) and Mn(2+) entry in a concentration-dependent manner. Stimulation of platelets with the physiological agonist thrombin activated coupling between the IP(3) receptor type II and endogenously expressed hTrp1. This event was reversed by refilling of the internal Ca(2+) stores but maintained after removal of the agonist if the stores were not allowed to refill. Inhibition of IP(3) recycling using Li(+) or inhibition of IP(3)Rs with xestospongin C or treatment with jasplakinolide, to stabilize the cortical actin filament network, abolished thrombin-induced coupling between hTrp1 and IP(3)R type II. Incubation with the anti-hTrp1 antibody inhibited thrombin-evoked Ca(2+) entry without affecting Ca(2+) release from intracellular stores. These results provide evidence for the involvement of hTrp1 in the activation of store-mediated Ca(2+) entry by coupling to IP(3)R type II in normal human cells.  相似文献   

9.
We have studied the Ca(2+) leak pathways in the endoplasmic reticulum of pancreatic acinar cells by directly measuring Ca(2+) in the endoplasmic reticulum ([Ca(2+)](ER)). Cytosolic Ca(2+) ([Ca(2+)](C)) was clamped to the resting level by a BAPTA-Ca(2+) mixture. Administration of cholecystokinin within the physiological concentration range caused a graded decrease of [Ca(2+)](ER), and the rate of Ca(2+) release generated by 10 pm cholecystokinin is at least 3x as fast as the basal Ca(2+) leak revealed by inhibition of the endoplasmic reticulum Ca(2+)-ATPase. Acetylcholine also evokes a dose-dependent decrease of [Ca(2+)](ER), with an EC(50) of 0.98 +/- 0.06 microm. Inhibition of receptors for inositol 1,4,5-trisphosphate (IP(3)) by heparin or flunarizine blocks the effect of acetylcholine but only partly blocks the effect of cholecystokinin. 8-NH(2) cyclic ADP-ribose (20 microm) inhibits the action of cholecystokinin, but not of acetylcholine(.) The basal Ca(2+) leak from the endoplasmic reticulum is not blocked by antagonists of the IP(3) receptor, the ryanodine receptor, or the receptor for nicotinic acid adenine dinucleotide phosphate. However, treatment with puromycin (0.1-1 mm) to remove nascent polypeptides from ribosomes increases Ca(2+) leak from the endoplasmic reticulum by a mechanism independent of the endoplasmic reticulum Ca(2+) pumps and of the receptors for IP(3) or ryanodine.  相似文献   

10.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

11.
During fertilization of sea urchin eggs, the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) transiently increases (Ca(2+) transient). Increased [Ca(2+)](i) results from a rapid release from intracellular stores, mediated by one or both of two signaling pathways; inositol 1,4,5-trisphosphate (IP(3)) and IP(3) receptor (IP(3)R) or cyclic GMP (cGMP), cyclic ADP-ribose (cADPR) and ryanodine receptor (RyR). During fertilization, cGMP and cADPR increase preceding the Ca(2+) transient, suggesting their contribution to this. If the RyR pathway contributed to the Ca(2+) transient, its Ca(2+) releasing activity would develop in parallel with that of the IP(3) system during maturation of oocytes. Sea urchin oocytes were cultivated in vitro and Ca(2+) transients induced by photolysis of caged IP(3) or caged cADPR were measured during maturation. Oocytes spontaneously began to maturate in seawater. More than 50% of oocytes underwent germinal vesicle breakdown within 25 h and the second meiosis within 35 h, but it took more than 24 h until they became functionally identical to in vivo-matured eggs. Both IP(3) and cADPR induced Ca(2+) transients comparable to those of in vivo-matured eggs later than 24 h from the second meiosis. However, cADPR induced a small Ca(2+) transient even before meiosis, whereas IP(3) and sperm almost did not.  相似文献   

12.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

13.
Three subtypes of inositol 1,4,5-trisphosphate receptor (IP(3)R1, IP(3)R2, and IP(3)R3) Ca(2+) release channel share basic properties but differ in terms of regulation. To what extent they contribute to complex Ca(2+) signaling, such as Ca(2+) oscillations, remains largely unknown. Here we show that HeLa cells express comparable amounts of IP(3)R1 and IP(3)R3, but knockdown by RNA interference of each subtype results in dramatically distinct Ca(2+) signaling patterns. Knockdown of IP(3)R1 significantly decreases total Ca(2+) signals and terminates Ca(2+) oscillations. Conversely, knockdown of IP(3)R3 leads to more robust and long lasting Ca(2+) oscillations than in controls. Effects of IP(3)R3 knockdown are surprisingly similar in COS-7 cells that predominantly (>90% of total IP(3)R) express IP(3)R3, suggesting that IP(3)R3 functions as an anti-Ca(2+)-oscillatory unit without contributing to peak amplitude of Ca(2+) signals, irrespective of its relative expression level. Therefore, differential expression of the IP(3)R subtype is critical for various forms of Ca(2+) signaling, and, particularly, IP(3)R1 and IP(3)R3 have opposite roles in generating Ca(2+) oscillations.  相似文献   

14.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

15.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

16.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

17.
Yoo SH  Nam SW  Huh SK  Park SY  Huh YH 《Biochemistry》2005,44(25):9246-9254
Although the inositol 1,4,5-trisphosphate (IP(3)) induced nuclear Ca(2+) releases have been shown to play key roles in nuclear functions, the presence and operation of the IP(3)-dependent Ca(2+) control mechanism in the nucleoplasm have not been shown. Recently, we found the presence of a high-capacity, low-affinity Ca(2+)-storage protein chromogranin B (CGB) and all three IP(3) receptor (IP(3)R) isoforms in the nucleoplasm, localizing widely in both the heterochromatin and euchromatin regions. In view of the essential role of CGB-IP(3)R coupling in IP(3)-dependent Ca(2+) release in the endoplasmic reticulum, the potential coupling between CGB and the IP(3)Rs in the nucleoplasm was investigated. Hence, we found in the present study the presence of a nucleoplasmic complex, which is composed of the IP(3)R, CGB, and phospholipids, with an estimated molecular mass of approximately 2-3 x 10(7) Da, suggesting the possibility of the presence of an IP(3)-sensitive Ca(2+) store in the nucleoplasm. Moreover, double-labeling immunogold electron microscope studies showed the colocalization of all three IP(3)R isoforms with CGB to the extent that the majority of each IP(3)R isoform-labeling gold particles found in the nucleoplasm was literally next to the CGB-labeling gold particles. In line with the potential existence of an IP(3)-dependent vesicular nucleoplasmic Ca(2+) store, our preliminary results indeed showed a sudden release of Ca(2+) from a putative nucleoplasmic Ca(2+) store in response specifically to IP(3) but not to inositol 1,4-bisphosphate or inositol 1,3,4,5-tetrakisphosphate.  相似文献   

18.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

19.
Activation of TRPC3 channels is concurrent with inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-mediated intracellular Ca(2+) release and associated with phosphatidylinositol 4,5-bisphosphate hydrolysis and recruitment to the plasma membrane. Here we report that interaction of TRPC3 with receptor for activated C-kinase-1 (RACK1) not only determines plasma membrane localization of the channel but also the interaction of IP(3)R with RACK1 and IP(3)-dependent intracellular Ca(2+) release. We show that TRPC3 interacts with RACK1 via N-terminal residues Glu-232, Asp-233, Glu-240, and Glu-244. Carbachol (CCh) stimulation of HEK293 cells expressing wild type TRPC3 induced recruitment of a ternary TRPC3-RACK1-IP(3)R complex and increased surface expression of TRPC3 and Ca(2+) entry. Mutation of the putative RACK1 binding sequence in TRPC3 disrupted plasma membrane localization of the channel. CCh-stimulated recruitment of TRPC3-RACK1-IP(3)R complex as well as increased surface expression of TRPC3 and receptor-operated Ca(2+) entry were also attenuated. Importantly, CCh-induced intracellular Ca(2+) release was significantly reduced as was RACK1-IP(3)R association without any change in thapsigargin-stimulated Ca(2+) release and entry. Knockdown of endogenous TRPC3 also decreased RACK1-IP(3)R association and decreased CCh-stimulated Ca(2+) entry. Furthermore, an oscillatory pattern of CCh-stimulated intracellular Ca(2+) release was seen in these cells compared with the more sustained pattern seen in control cells. Similar oscillatory pattern of Ca(2+) release was seen after CCh stimulation of cells expressing the TRPC3 mutant. Together these data demonstrate a novel role for TRPC3 in regulation of IP(3)R function. We suggest TRPC3 controls agonist-stimulated intracellular Ca(2+) release by mediating interaction between IP(3)R and RACK1.  相似文献   

20.
Regulators of G protein signaling (RGS) proteins accelerate the GTPase activity of Galpha subunits to determine the duration of the stimulated state and control G protein-coupled receptor-mediated cell signaling. RGS2 is an RGS protein that shows preference toward Galpha(q).To better understand the role of RGS2 in Ca(2+) signaling and Ca(2+) oscillations, we characterized Ca(2+) signaling in cells derived from RGS2(-/-) mice. Deletion of RGS2 modified the kinetic of inositol 1,4,5-trisphosphate (IP(3)) production without affecting the peak level of IP(3), but rather increased the steady-state level of IP(3) at all agonist concentrations. The increased steady-state level of IP(3) led to an increased frequency of [Ca(2+)](i) oscillations. The cells were adapted to deletion of RGS2 by reducing Ca(2+) signaling excitability. Reduced excitability was achieved by adaptation of all transporters to reduce Ca(2+) influx into the cytosol. Thus, IP(3) receptor 1 was down-regulated and IP(3) receptor 3 was up-regulated in RGS2(-/-) cells to reduce the sensitivity for IP(3) to release Ca(2+) from the endoplasmic reticulum to the cytosol. Sarco/endoplasmic reticulum Ca(2+) ATPase 2b was up-regulated to more rapidly remove Ca(2+) from the cytosol of RGS2(-/-) cells. Agonist-stimulated Ca(2+) influx was reduced, and Ca(2+) efflux by plasma membrane Ca(2+) was up-regulated in RGS2(-/-) cells. The result of these adaptive mechanisms was the reduced excitability of Ca(2+) signaling, as reflected by the markedly reduced response of RGS2(-/-) cells to changes in the endoplasmic reticulum Ca(2+) load and to an increase in extracellular Ca(2+). These findings highlight the central role of RGS proteins in [Ca(2+)](i) oscillations and reveal a prominent plasticity and adaptability of the Ca(2+) signaling apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号