首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a −/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts.  相似文献   

2.
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.  相似文献   

3.
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.  相似文献   

4.
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.  相似文献   

5.
One of the earliest stages of brain morphogenesis is the establishment of the neural tube during neurulation. While some of the cellular mechanisms responsible for neurulation have been described in a number of vertebrate species, the underlying molecular processes are not fully understood. We have identified the zebrafish homolog of protocadherin-19, a member of the cadherin superfamily, which is expressed in the anterior neural plate and is required for brain morphogenesis. Interference with Protocadherin-19 function with antisense morpholino oligonucleotides leads to a severe disruption in early brain morphogenesis. Despite these pronounced effects on neurulation, axial patterning of the neural tube appears normal, as assessed by in situ hybridization for otx2, pax2.1 and krox20. Characterization of embryos early in development by in vivo 2-photon timelapse microscopy reveals that the observed disruption of morphogenesis results from an arrest of cell convergence in the anterior neural plate. These results provide the first functional data for protocadherin-19, demonstrating an essential role in early brain development.  相似文献   

6.
During vertebrate gastrulation, the three germ layers, ectoderm, mesoderm and endoderm are formed, and the resulting progenitor cells are brought into the positions from which they will later contribute more complex tissues and organs. A core element in this process is the internalization of mesodermal and endodermal progenitors at the onset of gastrulation. Although many of the molecules that induce mesendoderm have been identified, much less is known about the cellular mechanisms underlying mesendodermal cell internalization and germ layer formation. Here we show that at the onset of zebrafish gastrulation, mesendodermal progenitors in dorsal/axial regions of the germ ring internalize by single cell delamination. Once internalized, mesendodermal progenitors upregulate E-Cadherin (Cadherin 1) expression, become increasingly motile and eventually migrate along the overlying epiblast (ectodermal) cell layer towards the animal pole of the gastrula. When E-Cadherin function is compromised, mesendodermal progenitors still internalize, but, with gastrulation proceeding, fail to elongate and efficiently migrate along the epiblast, whereas epiblast cells themselves exhibit reduced radial cell intercalation movements. This indicates that cadherin-mediated cell-cell adhesion is needed within the forming shield for both epiblast cell intercalation, and mesendodermal progenitor cell elongation and migration during zebrafish gastrulation. Our data provide insight into the cellular mechanisms underlying mesendodermal progenitor cell internalization and subsequent migration during zebrafish gastrulation, and the role of cadherin-mediated cell-cell adhesion in these processes.  相似文献   

7.
8.
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.  相似文献   

9.
10.
The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.  相似文献   

11.
The cellular and molecular mechanisms that regulate endoderm development in vertebrates have only recently begun to be explored. Here we show that the zebrafish locus casanova plays an early and essential role in this process. casanova mutants lack a gut tube and do not express any molecular markers of endoderm differentiation. The early endodermal expression of genes such as axial, gata5, and fkd2 does not initiate in casanova mutants, indicating that the endoderm is defective from the onset of gastrulation. Mosaic analysis demonstrates that casanova functions cell autonomously within the endodermal progenitors. We also report the isolation of a zebrafish homologue of Mixer, a gene important for early endoderm formation in Xenopus. casanova does not encode zebrafish Mixer, and mixer expression is normal in casanova mutants, indicating that casanova acts downstream of, or parallel to, mixer to promote endoderm formation. We further find that the forerunner cells, a specialized group of noninvoluting dorsal mesendodermal cells, do not form in casanova mutants. Studies of casanova mutants do not support an important role for the forerunner cells in either dorsal axis or tail development, as has been previously proposed. In addition, although different populations of mesodermal precursors are generated normally in casanova mutants, morphogenetic defects in the heart, vasculature, blood, and kidney are apparent, suggesting a possible role for the endoderm in morphogenesis of these organs.  相似文献   

12.
Organ morphogenesis requires cellular shape changes and tissue rearrangements that occur in a precisely timed manner. Here, we show that zebrafish heart and soul (Has)/protein kinase C iota (PRKCi) is required tissue-autonomously within the myocardium for normal heart morphogenesis and that this function depends on its catalytic activity. In addition, we demonstrate that nagie oko (Nok) is the functional homolog of mammalian protein associated with Lin-seven 1 (Pals1)/MAGUK p55 subfamily member 5 (Mpp5), and we dissect its earlier and later functions during myocardial morphogenesis. Has/PRKCi and Nok/Mpp5 are required early for the polarized epithelial organization and coherence of myocardial cells during heart cone formation. Zygotic nok/mpp5 mutants have later myocardial defects, including an incomplete heart tube elongation corresponding with a failure of myocardial cells to correctly expand in size. Furthermore, we show that nok/mpp5 acts within myocardial cells during heart tube elongation. Together, these results demonstrate that cardiac morphogenesis depends on the polarized organization and coherence of the myocardium, and that the expansion of myocardial cell size contributes to the transformation of the heart cone into an elongated tube.  相似文献   

13.
The central nervous system is derived from the neural plate that undergoes a series of complex morphogenetic movements resulting in formation of the neural tube in a process known as neurulation. During neurulation, morphogenesis of the mesenchyme that underlies the neural plate is believed to drive neural fold elevation. The cranial mesenchyme is comprised of the paraxial mesoderm and neural crest cells. The cells of the cranial mesenchyme form a pourous meshwork composed of stellate shaped cells and intermingling extracellular matrix (ECM) strands that support the neural folds. During neurulation, the cranial mesenchyme undergoes stereotypical rearrangements resulting in its expansion and these movements are believed to provide a driving force for neural fold elevation. However, the pathways and cellular behaviors that drive cranial mesenchyme morphogenesis remain poorly studied. Interactions between the ECM and the cells of the cranial mesenchyme underly these cell behaviors. Here we describe a simple ex vivo explant assay devised to characterize the behaviors of these cells. This assay is amendable to pharmacological manipulations to dissect the signaling pathways involved and live imaging analyses to further characterize the behavior of these cells. We present a representative experiment demonstrating the utility of this assay in characterizing the migratory properties of the cranial mesenchyme on a variety of ECM components.  相似文献   

14.
《Developmental biology》1997,189(2):256-269
In this study we investigate the induction of the cell behaviors underlying neurulation in the frog,Xenopus laevis.Although planar signals from the organizer can induce convergent extension movements of the posterior neural tissue in explants, the remaining morphogenic processes of neurulation do not appear to occur in absence of vertical interactions with the organizer (R. Kelleret al.,1992,Dev. Dyn.193, 218–234). These processes include: (1) cell elongation perpendicular to the plane of the epithelium, forming the neural plate; (2) cell wedging, which rolls the neural plate into a trough; (3) intercalation of two layers of neural plate cells to form one layer; and (4) fusion of the neural folds. To allow planar signaling between all the inducing tissues of the involuting marginal zone and the responding prospective ectoderm, we have designed a “giant sandwich” explant. In these explants, cell elongation and wedging are induced in the superficial neural layer by planar signals without persistent vertical interactions with underlying, involuted mesoderm. A neural trough forms, and neural folds form and approach one another. However, the neural folds do not fuse with one another, and the deep cells of these explants do not undergo their normal behaviors of elongation, wedging, and intercalation between the superficial neural cells, even when planar signals are supplemented with vertical signaling until the late midgastrula (stage 11.5). Vertical interactions with mesoderm during and beyond the late gastrula stage were required for expression of these deep cell behaviors and for neural fold fusion. These explants offer a way to regulate deep and superficial cell behaviors and thus make possible the analysis of the relative roles of these behaviors in closing the neural tube.  相似文献   

15.
During gastrulation, the mesoderm spreads out between ectoderm and endoderm to form a mesenchymal cell layer. Surprisingly the underlying principles of mesoderm layer formation are very similar in evolutionarily distant species like the fruit fly, Drosophila melanogaster, and the frog, Xenopus laevis, in which the molecular and the cellular basis of mesoderm layer formation have been extensively studied. Complementary expression of growth factors in the ectoderm and their receptors in the mesoderm act to orient cellular protrusive activities and direct cell movement, leading to radial cell intercalation and the spreading of the mesoderm layer. This mechanism is contrasted with generic physical mechanisms of tissue spreading that consider the adhesive and physical properties of the cells and tissues. Both mechanisms need to be integrated to orchestrate mesenchymal morphogenesis.  相似文献   

16.
17.
During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.  相似文献   

18.
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.  相似文献   

19.
N-cadherin (Ncad) is a classical cadherin that is implicated in several aspects of vertebrate embryonic development, including somitogenesis, heart morphogenesis, neural tube formation and establishment of left-right asymmetry. However, genetic in vivo analyses of its role during neural development have been rather limited. We report the isolation and characterization of the zebrafish parachute (pac) mutations. By mapping and candidate gene analysis, we demonstrate that pac corresponds to a zebrafish n-cadherin (ncad) homolog. Three mutant alleles were sequenced and each is likely to encode a non-functional Ncad protein. All result in a similar neural tube phenotype that is most prominent in the midbrain, hindbrain and the posterior spinal cord. Neuroectodermal cell adhesion is altered, and convergent cell movements during neurulation are severely compromised. In addition, many neurons become progressively displaced along the dorsoventral and the anteroposterior axes. At the cellular level, loss of Ncad affects beta-catenin stabilization/localization and causes mispositioned and increased mitoses in the dorsal midbrain and hindbrain, a phenotype later correlated with enhanced apoptosis and the appearance of ectopic neurons in these areas. Our results thus highlight novel and crucial in vivo roles for Ncad in the control of cell convergence, maintenance of neuronal positioning and dorsal cell proliferation during vertebrate neural tube development.  相似文献   

20.
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis—endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号