首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared the effects of norepinephrine, forskolin, and dibutyryl cyclic AMP (Bt2cAMP) on the regulation of the cytosolic enzyme glycerol phosphate dehydrogenase (GPDH) in the C6 rat glioma cell line. Forskolin and Bt2cAMP elicit a dose-dependent increase in the levels of the enzyme that was, however, unaffected by norepinephrine. The half-maximal effect of forskolin was obtained at 7-8 microM, and the effect was maximal at 30 microM. Dexamethasone at a 50 nM concentration produced a two- to sixfold induction of GPDH after 48 h. The combination of dexamethasone with forskolin or Bt2cAMP leads to an elevation in GPDH levels that is higher than that produced by one of the compounds alone. This potentiation is found when both agents are added together with or after the glucocorticoid. The increase in uninduced and dexamethasone-induced GPDH activity was blocked by cycloheximide and actinomycin D, indicating that de novo protein and RNA synthesis are required. The activity of cytosolic lactate dehydrogenase activity did not change after incubation with dexamethasone, but increased with forskolin or Bt2cAMP.  相似文献   

2.
Modulation of Human Glutamate Transporter Activity by Phorbol Ester   总被引:1,自引:4,他引:1  
Abstract: Termination of synaptic glutamate transmission depends on rapid removal of glutamate by neuronal and glial high-affinity transporters. Molecular biological and pharmacological studies have demonstrated that at least five subtypes of Na+-dependent mammalian glutamate transporters exist. Our study demonstrates that Y-79 human retinoblastoma cells express a single Na+-dependent glutamate uptake system with a K m of 1.7 ± 0.42 µ M that is inhibited by dihydrokainate and dl - threo -β-hydroxyaspartate (IC50 = 0.29 ± 0.17 µ M and 2.0 ± 0.43 µ M , respectively). The protein kinase C activator phorbol 12-myristate 13-acetate caused a concentration-dependent inhibition of glutamate uptake (IC50 = 0.56 ± 0.05 n M ), but did not affect Na+-dependent glycine uptake significantly. This inhibition of glutamate uptake resulted from a fivefold decrease in the transporter's affinity for glutamate, without significantly altering the V max. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate protein kinase C, did not alter glutamate uptake significantly. The phorbol 12-myristate 13-acetate-induced inhibition of glutamate uptake was reversed by preincubation with staurosporine. The biophysical and pharmacological profile of the human glutamate transporter expressed by the Y-79 cell line indicates that it belongs to the dihydrokainate-sensitive EAAT2/GLT-1 subtype. This conclusion was confirmed by western blot analysis. Protein kinase C modulation of glutamate transporter activity may represent a mechanism to modulate extracellular glutamate and shape postsynaptic responses.  相似文献   

3.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

4.
5.
Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K i=3.02±0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.S. R. Mirandola and E. N. Maciel contributed equally to this work.  相似文献   

6.
Developing oligodendrocytes cultured in vitro express glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) and are known to respond to glucocorticoid treatment by increased activity of GPDH. We present evidence that GPDH is enriched in white matter and oligodendrocytes of adult pig brain. Bulk-isolated oligodendrocytes maintained in culture for several weeks exhibit an almost constant level of GPDH activity. Furthermore, a 4-day stimulation with hydrocortisone induces GPDH specific activity of long-term cultured oligodendrocytes from adult pig brain.  相似文献   

7.
Abstract: Aromatic l -amino acid decarboxylase (AAAD) is required for the synthesis of catecholamines, serotonin, and the trace amines. We found that the protein kinase C activator phorbol 12-myristate 13-acetate administered intracerebroventricularly transiently increased AAAD activity by 30–50% over control values within ∼30 min in the striatum and midbrain of the mouse. The enzyme increase was manifested as an apparent increase of V max with little change of K m for either l -3,4-dihydroxyphenylalanine or pyridoxal phosphate. Chelerythrine, a protein kinase C inhibitor, prevented the phorbol ester-induced increase of AAAD. Moreover, okadaic acid, a serine/threonine-selective protein phosphatase 1 and 2A inhibitor, also increased AAAD activity in the mouse striatum and midbrain. Taken together, these observations suggest that protein kinase C-mediated pathways modulate AAAD activity in vivo.  相似文献   

8.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent activator of protein kinase C, on high-affinity Na(+)-dependent glutamate transport were investigated in primary cultures of neurons and glial cells from rat brain cortex. Incubation of glial cells with TPA led to concentration- and time-dependent increases in the glutamate transport that could be completely suppressed by the addition of the protein kinase C (PKC) inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine. The TPA effects could be mimicked by oleoylacetylglycerol and by the diacylglycerol kinase inhibitor R59022. The effects of TPA were potentiated by the Ca2+ ionophore A23187. Under the chosen experimental conditions TPA had no effect on glutamate transport in neurons. We conclude that PKC activates the sodium-dependent high-affinity glutamate transport in glial cells and that it has dissimilar effects on neurons and glial cells.  相似文献   

9.
Primary cultures of bovine adrenal chromaffin cells contain neurofilament proteins that are hypophosphorylated. When the cells were grown in medium containing 32Pi and 0.1 microM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), 32P-labelling of the three neurofilament subunits was increased 6- to 20-fold relative to controls, the highest level of stimulation occurring for the mid-sized subunit. Addition of the protease inhibitor leupeptin to the growth medium had no effect on TPA-stimulated phosphorylation. The increased 32P incorporation was accompanied by a marked reduction in the gel electrophoretic mobilities of the two largest subunits. The augmented phosphorylation was observed 10 min after addition of TPA to a concentration of 0.1 microM or after 1 h of incubation in the presence of 0.01 microM TPA. One-dimensional peptide mapping and phosphoamino acid analysis indicated that TPA stimulated the phosphorylation of seryl residues at new sites in the mid-sized subunit. All of the latter subunit contained in the cytoskeletal fraction of chromaffin cells was converted to a more highly phosphorylated state after the cells were grown in the presence of TPA for 1 h.  相似文献   

10.
Abstract: Dexamethasone suppresses C6 glial cell proliferation in vitro. This growth-inhibitory response is accompanied by elevated amounts of acid-insoluble protein in the steroid-treated cells relative to controls. These results provide additional evidence that the glucocorticoid acts to arrest C6 cell proliferation in G2.  相似文献   

11.
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons.  相似文献   

12.
FOS/JUN介导佛波酯对内皮素基因表达的诱导作用   总被引:1,自引:0,他引:1  
利用凝胶电泳迁移率改变实验、RNA印迹和蛋白质印迹分析分别检查了c-jun抗体对内皮素-1(ET-1)基因AP-1位点与核蛋白结合的影响及肿瘤促进剂佛波酯(TPA)对c-fos/c-jun基因表达的作用.结果发现,c-jun抗体可使AP-1位点-核蛋白复合物的电泳迁移率发生改变,TPA显著促进c-fos/c-jun基因表达和血管内皮细胞的AP-1结合活性.实验表明,TPA对ET-1基因表达的诱导作用是通过促进AP-1转录因子c-fos/c-jun合成来介导的.  相似文献   

13.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

14.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

15.
Abstract: Cytosolic dexamethasone (DEX) binding sites were studied in the Wallerian-degenerating rat optic nerve (ON), a tissue that is rich in neuroglial cells but devoid of neuronal perikarya and processes. For comparison, hippocampal (HI) and anterior pituitary (AP) cytosols were studied in parallel. Binding sites in these three tissues were found to be quite similar in almost all respects. The sites have a high affinity for DEX ( K D= 2.5–3.5 n M ), are present at a high concentration ( B max= 360–365 fmol/mg cytosol protein), and possess a binding specificity typical of glucocorticoid receptors in other organs. Most experiments supported the assumption of a single DEX-binding species in each tissue. Saturation analyses consistently yielded linear Scatchard plots over the range of DEX concentrations tested. Density gradient centrifugation in each case revealed a single peak with a sedimentation coefficient of 7–8S at low ionic strength and 4–4.5S in the presence of 0.3 M KCl. Isoelectric focusing similarly localized most of the binding in each cytosol to a single large peak with an isoelectric point of approximately 6.0. Dissociation rate determinations, on the other hand, suggested the possibility of two different binding sites in each tissue. These studies show that glucocorticoid binders present in cells of the ON possess the same characteristics as the cytoplasmic receptors found in HI, AP, and other recognized glucocorticoid target tissues.  相似文献   

16.
A series of cationic ester porphyrins are much more cytotoxic to tumor cells than photofrin, meso‐tetrakis(1‐methylpyridinium‐4‐yl)porphyrin (TMPyP4), and cisplatin. The lowest IC50 value for SGC7901 is ca. 6 nM in vitro with irradiation. These porphyrins also exhibited the most potent photo‐induced cytotoxicity without photobleaching. HeLa Cell apoptosis induced by cationic ester porphyrins after illumination was examined by flow cytometric analysis, staining assays with propidium iodide and annexin V FITC‐PI, and further confirmed by observing morphological changes in the cells. The result of this study indicates that these cationic ester porphyrins may be applied in photodynamic therapy (PDT) in the future.  相似文献   

17.
Abstract: To understand better the mechanisms by which progesterone (PROG) promotes myelination in the PNS, cultured rat Schwann cells were transiently transfected with reporter constructs in which luciferase expression was controlled by the promoter region of either the peripheral myelin protein-22 (PMP22) or the protein zero (P0) genes. PROG stimulated the P0 promoter and promoter 1, but not promoter 2, of PMP22. The effect of PROG was specific, as estradiol and testosterone only weakly activated promoters. Dose-response curves for stimulation of both promoter constructs by PROG were biphasic. RU486, a PROG antagonist, did not abolish the effect of PROG, but stimulated promoter activities by itself. In the human carcinoma cell line T47D expressing high levels of PROG receptor, PROG did not stimulate the P0 and PMP22 promoters, whereas the promoter region of the mouse mammary tumor virus was fully activated. Thus, the activation by PROG of promoter activity of two peripheral myelin protein genes is Schwann-cell specific.  相似文献   

18.
Maple syrup urine disease (MSUD) is an inherited metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAAs) and their branched-chain keto acids (BCKAs) in blood and other tissues. Neurological dysfunction is usually present in the affected patients, but the mechanisms of brain damage in this disease are not fully understood. Considering that brain energy metabolism seems to be altered in MSUD, the main objective of this study was to investigate the in vitro effect of BCAAs and BCKAs on creatine kinase activity, a key enzyme of energy homeostasis, in brain cortex of young rats. BCAAs, but not their BCKAs, significantly inhibited creatine kinase activity at concentrations similar to those found in the plasma of MSUD patients (0.5–5 mM). Considering the crucial role creatine kinase plays in energy homeostasis in brain, if this effect also occurs in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease.  相似文献   

19.
The effects of carbon tetrachloride, methylene chloride and chloroform on phosphorylation of PO was examined. The results of the dose response curve revealed that carbon tetrachloride (0.67%), methylene chloride (2%) and chloroform (1%) induced phosphorylation of PO by approximately 4, 6, and 12-fold, respectively. PO was found to be phosphorylated on the serine residue, and the phosphorylation of the serine residue was markedly increased when PO was phosphorylated in the presence of these compounds. Since tumor promoters, carbon tetrachloride and chloroform, have been shown to activate protein kinase C in platelets it is postulated that the increased phosphorylation of PO may result from the activation of myelin associated protein kinase C. The presence of phospholipid sensitive Ca2+-dependent protein kinase (protein kinase C) in purified nerve myelin was demonstrated by increased phosphorylation of PO in the presence of Ca2+ and phosphatidylserine.  相似文献   

20.
The effect of hippocampal kindling on the regional brain concentration of total glial fibrillary acidic protein (GFAP), a marker of reactive astrocytes, was studied in partially kindled rats, and in fully kindled rats after a post-kindling period of 24 h, 1 week, and 2 months. GFAP concentration was measured in arbitrary units by dot-blots. In the hippocampus, dentate gyrus, basolateral amygdala, pyriform cortex, and entorhinal cortex, limbic structures which are known to be involved in the kindling process, there was an increase in GFAP concentration which was maximal in the fully kindled animals studied after 24 h. In most brain areas, GFAP concentration was still elevated 1 week post-kindling, but had declined to control level 2 months post-kindling. A significant increase in GFAP was also found in septum, ventral pallidum/accumbens nucleus, and primary motor cortex of kindled rats with a post-kindling period of 24 h, whereas in several other brain regions GFAP was unchanged. These results suggest that astrocyte activation, indicative of degenerative changes in nearby neurons, is a transient and regional phenomenon in kindling occurring only during the development of the kindled state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号