首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lycopene synthetic pathway was engineered in Escherichia coli using the carotenoid genes (crtE, crtB, and crtI) of Pantoea agglomerans and Pantoea ananatis. E. coli harboring the P. agglomerans crt genes produced 27 mg/l of lycopene in 2YT medium without isopropyl-beta-d-thiogalactopyranoside (IPTG) induction, which was twofold higher than that produced by E. coli harboring the P. ananatis crt genes (12 mg/l lycopene) with 0.1 mM IPTG induction. The crt genes of P. agglomerans proved better for lycopene production in E. coli than those of P. ananatis. The crt genes of the two bacteria were also compared in E. coli harboring the mevalonate bottom pathway, which was capable of providing sufficient carotenoid building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), with exogenous mevalonate supplementation. Lycopene production significantly increased using the mevalonate bottom pathway and 60 mg/l of lycopene was obtained with the P. agglomerans crt genes, which was higher than that obtained with the P. ananatis crt genes (35 mg/l lycopene). When crtE among the P. ananatis crt genes was replaced with P. agglomerans crtE or Archaeoglobus fulgidus gps, both lycopene production and cell growth were similar to that obtained with P. agglomerans crt genes. The crtE gene was responsible for the observed difference in lycopene production and cell growth between E. coli harboring the crt genes of P. agglomerans and P. ananatis. As there was no significant difference in lycopene production between E. coli harboring P. agglomerans crtE and A. fulgidus gps, farnesyl diphosphate (FPP) synthesis was not rate-limiting in E. coli. Sang-Hwal Yoon and Ju-Eun Kim: These authors contributed equally to this work.  相似文献   

2.
A limited number of carotenoid pathway genes from microbial sources have been studied for analyzing the pathway complementation in the heterologous host Escherichia coli. In order to systematically investigate the functionality of carotenoid pathway enzymes in E. coli, the pathway genes of carotenogenic microorganisms (Brevibacterium linens, Corynebacterium glutamicum, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodopirellula baltica, and Pantoea ananatis) were modified to form synthetic expression modules and then were complemented with Pantoea agglomerans pathway enzymes (CrtE, CrtB, CrtI, CrtY, and CrtZ). The carotenogenic pathway enzymes in the synthetic modules showed unusual activities when complemented with E. coli. For example, the expression of heterologous CrtEs of B. linens, C. glutamicum, and R. baltica influenced P. agglomerans CrtI to convert its substrate phytoene into a rare product—3,4,3′,4′-tetradehydrolycopene—along with lycopene, which was an expected product, indicating that CrtE, the first enzyme in the carotenoid biosynthesis pathway, can influence carotenoid profiles. In addition, CrtIs of R. sphaeroides and R. capsulatus converted phytoene into an unusual lycopene as well as into neurosporene. Thus, this study shows that the functional complementation of pathway enzymes from different sources is a useful methodology for diversifying biosynthesis as nature does.  相似文献   

3.
This work describes carotenoid pigment production by the red bacterium Brevibacterium linens covering strain diversity, kinetic and analytical aspects. Pigment production of 23 B. linens strains ranged from 0.05 to 0.60 mg pigments L−1 culture, with specific productivity from 0.2 to 0.6 mg pigments per g dry biomass. The pigment production time curve showed a sigmoid shape, that matched cell growth. HPLC analysis revealed three groups of peaks, possibly non-hydroxylated, mono- and di-hydroxylated carotenoids. Polar molecules were mainly represented. Journal of Industrial Microbiology & Biotechnology (2000) 24, 64–70. Received 19 April 1999/ Accepted in revised form 25 September 1999  相似文献   

4.
A carotenoid synthesis gene cluster was isolated from a marine bacterium Algoriphagus sp. strain KK10202C that synthesized flexixanthin. Seven genes were transcribed in the same direction, among which five of them were involved in carotenoid synthesis. This cluster had a unique gene organization, with an isoprenoid gene, ispH (previously named lytB), being present among the carotenoid synthesis genes. The lycopene β-cyclase encoded by the crtY cd gene appeared to be a fusion of bacterial heterodimeric lycopene cyclase CrtYc and CrtYd. This was the first time that a fusion-type of lycopene β-cyclase was reported in eubacteria. Heterologous expression of the Algoriphagus crtY cd gene in lycopene-accumulating Escherichia coli produced bicyclic β-carotene. A biosynthesis pathway for monocyclic flexixanthin was proposed in Algoriphagus sp. strain KK10202C, though several of the carotenoid synthesis genes not linked with the cluster have not yet been cloned.  相似文献   

5.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

6.
The red heterobasidiomycetous yeast Xanthophyllomyces dendrorhous (perfect state of Phaffia rhodozyma) contains a novel type of carotenoid biosynthetic enzyme. Its structural gene, designated crtYB, was isolated by functional complementation in a genetically modified, carotenogenic Escherichia coli strain. Expression studies in different carotenogenic E. coli strains demonstrated that the crtYB gene encodes a bifunctional protein involved both in synthesis of phytoene from geranylgeranyl diphosphate and in cyclisation of lycopene to β-carotene. By sequence comparison with other phytoene synthases and complementation studies in E. coli with various deletion derivatives of the crtYB gene, the regions responsible for phytoene synthesis and lycopene cyclisation were localised within the protein. Received: 20 January 1999 / Accepted: 21 May 1999  相似文献   

7.
We show here an efficient synthesis system of isoprenoids from acetoacetate as the main substrate. We expressed in Escherichia coli a Streptomyces mevalonate pathway gene cluster starting from HMG-CoA synthase and including isopentenyl diphosphate isomerase (idi) type 2 gene and the yeast idi type 1 and rat acetoacetate-CoA ligase (Aacl) genes. When the α-humulene synthase (ZSS1) gene of shampoo ginger was expressed in this transformant, the resultant E. coli produced 958 μg/mL culture of α-humulene with a lithium acetoacetate (LAA) supplement, which was a 13.6-fold increase compared with a control E. coli strain expressing only ZSS1. Next, we investigated if this E. coli strain engineered to utilize acetoacetate can synthesize carotenoids effectively. When the crtE, crtB, and crtI genes required for lycopene synthesis were expressed in the transformant, lycopene amounts reached 12.5 mg/g dry cell weight with addition of LAA, an 11.8-fold increase compared with a control expressing only the three crt genes. As for astaxanthin production with the E. coli transformant, in which the crtE, crtB, crtI, crtY, crtZ, and crtW genes were expressed, the total amount of carotenoids produced (astaxanthin, lycopene, and phytoene) was significantly increased to 7.5 times that of a control expressing only the six crt genes.  相似文献   

8.
Genes encoding enzymes with sequence similarity to carotenoid biosynthetic enzymes of other organisms were cloned fromStreptomyces griseus JA3933 and transformed into the colourless (non-daunorubicin producing) mutantStreptomyces griseus IMET JA3933/956/2. Cells harbouring these genes showed an orange-red pigmentation, caused by the strongly hydrophobic, membrane-bound lycopene. The cloned fragment (9 kb) contained seven genes, four transcribed in one direction (crtEIBV) and three (crtYTU) transcribed convergently to them. Three of these genes encode polypeptides that resemble geranylgeranyl-pyrophosphate (GGPP) synthases (CrtE), phytoene synthases (PS) (CrtB) and phytoene dehydrogenases (PDH) (CrtI), respectively, of various bacteria. These enzymes are sufficient for the formation of lycopene.crtE alone was sufficient to induce zeaxanthin formation in anEscherichia coli clone containing thecrt gene cluster fromErwinia herbicola deleted forcrtE. The combination ofcrtE andcrtB led to formation of phytoene inS. griseus. The putativecrtEp promoter region was cloned and mapped by primer extension analysis. In a gel retardation experiment, this fragment was specifically shifted by an unknown protein. CrtY shows similarity to lycopene cyclases that convert lycopene into-carotene, CrtT resembles various methyltransferases and CrtU a dehydrogenase. We conclude that these genes are functionally intact, but not expressed (cryptic) in the wild-typeS. griseus strain.  相似文献   

9.
A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.  相似文献   

10.
The pathways from β-carotene to astaxanthin are crucial key steps for producing astaxanthin, one of industrially useful carotenoids, in heterologous hosts. Two β-carotene ketolases (β-carotene 4,4′-oxygenase), CrtO and CrtW, with different structure are known up to the present. In this paper, we compared the catalytic functions of a CrtO ketolase that was obtained from a marine bacterium Rhodococcus erythropolis strain PR4, CrtO derived from cyanobacterium Synechosistis sp. PCC6803, and CrtW derived from a marine bacterium Brevundimonas sp. SD212, by complementation analysis in Escherichia coli expressing the known crt genes. Results strongly suggested that a CrtO-type ketolase was unable to synthesize astaxanthin from zeaxanthin, i.e., only a CrtW-type ketolase could accept 3-hydroxy-β-ionone ring as the substrate. Their catalytic efficiency for synthesizing canthaxanthin from β-carotene was also examined. The results obtained up to the present clearly suggest that the bacterial crtW and crtZ genes are a combination of the most promising gene candidates for developing recombinant hosts that produce astaxanthin as the predominant carotenoid.  相似文献   

11.
12.
Genes encoding enzymes with sequence similarity to carotenoid biosynthetic enzymes of other organisms were cloned fromStreptomyces griseus JA3933 and transformed into the colourless (non-daunorubicin producing) mutantStreptomyces griseus IMET JA3933/956/2. Cells harbouring these genes showed an orange-red pigmentation, caused by the strongly hydrophobic, membrane-bound lycopene. The cloned fragment (9 kb) contained seven genes, four transcribed in one direction (crtEIBV) and three (crtYTU) transcribed convergently to them. Three of these genes encode polypeptides that resemble geranylgeranyl-pyrophosphate (GGPP) synthases (CrtE), phytoene synthases (PS) (CrtB) and phytoene dehydrogenases (PDH) (CrtI), respectively, of various bacteria. These enzymes are sufficient for the formation of lycopene.crtE alone was sufficient to induce zeaxanthin formation in anEscherichia coli clone containing thecrt gene cluster fromErwinia herbicola deleted forcrtE. The combination ofcrtE andcrtB led to formation of phytoene inS. griseus. The putativecrtEp promoter region was cloned and mapped by primer extension analysis. In a gel retardation experiment, this fragment was specifically shifted by an unknown protein. CrtY shows similarity to lycopene cyclases that convert lycopene intoβ-carotene, CrtT resembles various methyltransferases and CrtU a dehydrogenase. We conclude that these genes are functionally intact, but not expressed (cryptic) in the wild-typeS. griseus strain.  相似文献   

13.
14.
In order to gain further insight into the partly-characterized carotenoid biosynthetic pathway in corn (Zea mays L.), we cloned cDNAs encoding the enzymes carotenoid isomerase (CRTISO) and β-carotene hydroxylase (BCH) using endosperm mRNA isolated from inbred line B73. For both enzymes, two distinct cDNAs were identified mapping to different chromosomes. The two crtiso cDNAs (Zmcrtiso1 and Zmcrtiso2) mapped to unlinked genes each containing 12 introns, a feature conserved among all crtiso genes studied thus far. ZmCRTISO1 was able to convert tetra-cis prolycopene to all-trans lycopene but could not isomerize the 15-cis double bond of 9,15,9′-tri-cis-ζ-carotene. ZmCRTISO2 is inactivated by a premature termination codon in B73 corn, but importantly the mutation is absent in other corn cultivars and the active enzyme showed the same activity as ZmCRTISO1. The two bch cDNAs (Zmbch1 and Zmbch2) mapped to unlinked genes each coding sequences containing five introns. ZmBCH1 was able to convert β-carotene into β-cryptoxanthin and zeaxanthin, but ZmBCH2 was able to form β-cryptoxanthin alone and had a lower overall activity than ZmBCH1. All four genes were expressed during endosperm development, with mRNA levels rising in line with carotenoid accumulation (especially zeaxanthin and lutein) until 25 DAP. Thereafter, expression declined for three of the genes, with only Zmcrtiso2 mRNA levels maintained by 30 DAP. We discuss the impact of paralogs with different expression profiles and functions on the regulation of carotenoid synthesis in corn.  相似文献   

15.
Many new carotenoid synthesis genes have recently been identified through genomic sequencing or functional cloning. Some of them exhibit novel structures and/or novel functions. This review describes such examples in the families of lycopene β-cyclases, putative homologues of phytoene dehydrogenases and new carotenoid hydroxylases. Both the functionally novel lycopene β-monocyclases and structurally novel fusion-type of lycopene β-cyclases were described. Another newly discovered sequence of lycopene β-cyclase described might represent a new class of lycopene β-cyclases previously not identified in several cyanobacteria. Three examples of putative homologues of phytoene dehydrogenases were described, however, they were confirmed to encode different and/or new functions such as β-carotene ketolase, 4,4′-diapolycopene oxygenase or prolycopene isomerase. Two new carotenoid hydroxylase genes were described that encoded the new function of 2,2′-β-ionone ring hydroxylase or 3,3′-isorenieratene hydroxylase. Phylogenetic analysis of these genes shed light on their possible evolutionary origins. These new genes also provide tools for synthesis of novel and desirable carotenoids by genetic engineering.  相似文献   

16.
Inhibitor studies and mutant analysis revealed a C30 pathway via 4,4′-diapophytoene and 4,4′-diaponeurosporene to 4,4′-diaponeursoporene-4-oic acid esters related to staphyloxanthin in Halobacillus halophilus. Six genes may be involved in this biosynthetic pathway and could be found in two adjacent gene clusters. Two genes of this pathway could be functionally assigned by functional pathway complementation as a 4,4′-diapophytoene synthase and a 4,4′-diapophytoene desaturase gene. These genes were organized in two operons together with two putative oxidase genes, a glycosylase and an acyl transferase ortholog. Pigment mutants were obtained by chemical mutagenesis. Carotenoid analysis showed that a white mutant accumulated 4,4′-diapophytoene due to a block in desaturation. In a yellow mutant carotenogenesis was blocked at the stage of 4,4′-diaponeurosporene and in an orange mutant at the stage of 4,4′-diaponeurosporene-4-oic acid. The protective function of these pigments could be demonstrated for H. halophilus after inhibition of carotenoid synthesis by initiation of oxidative stress. A degree of oxidative stress which still allowed 50% growth of carotenogenic cells resulted in the death of the cells devoid of colored carotenoids.  相似文献   

17.
Corynebacterium glutamicum accumulates the C50 carotenoid decaprenoxanthin. Rescued DNA from transposon color mutants of this Gram-positive bacterium was used to clone the carotenoid biosynthetic gene cluster. By sequence comparison and functional complementation, the genes involved in the synthesis of carotenoids with 50 carbon atoms were identified. The genes crtE, encoding a geranylgeranyl pyrophosphate synthase, crtB, encoding a phytoene synthase, and crtI, encoding a phytoene desaturase, are responsible for the formation of lycopene. The products of three novel genes, crtYe and crtYf, with sequence similarities to heterodimeric lycopene cyclase crtYc and crtYd, together with crtEb which exhibits a prenyl transferase motif, were involved in the conversion of C40 acyclic lycopene to cyclic C50 carotenoids. Using functional complementation in Escherichia coli, it could be shown that the elongation of lycopene to the acyclic C50 carotenoid flavuxanthin by the addition of C5 isoprenoid units at positions C-2 and C-2' is catalyzed by the crtEb gene product. Subsequently, the gene products of crtYe and crtYf in a concerted action convert the acyclic flavuxanthin into the cyclic C50 carotene, decaprenoxanthin, forming two epsilon-ionone groups. The mechanisms, involving two individual steps for the formation of cyclic C50 carotenoids from lycopene, are proposed on the basis of these results.  相似文献   

18.
In this study, the carotenoid biosynthetic pathways of Brevibacterium linens DSMZ 20426 were reconstructed, redesigned, and extended with additional carotenoid-modifying enzymes of other sources in a heterologous host Escherichia coli. The modular lycopene pathway synthesized an unexpected carotenoid structure, 3,4-didehydrolycopene, as well as lycopene. Extension of the novel 3,4-didehydrolycopene pathway with the mutant Pantoea lycopene cyclase CrtY2 and the Rhodobacter spheroidene monooxygenase CrtA generated monocyclic torulene and acyclic oxocarotenoids, respectively. The reconstructed β-carotene pathway synthesized an unexpected 7,8-dihydro-β-carotene in addition to β-carotene. Extension of the β-carotene pathway with the B. linens β-ring desaturase CrtU and Pantoea β-carotene hydroxylase CrtZ generated asymmetric carotenoid agelaxanthin A, which had one aromatic ring at the one end of carotene backbone and one hydroxyl group at the other end, as well as aromatic carotenoid isorenieratene and dihydroxy carotenoid zeaxanthin. These results demonstrate that reconstruction of the biosynthetic pathways and extension with promiscuous enzymes in a heterologous host holds promise as a rational strategy for generating structurally diverse compounds that are hardly accessible in nature.Carotenoids, which are produced by many microorganisms and plants, belong to a class of pigment chemicals found in nature. These structurally diverse pigments have different biological functions such as coloration, photo protection, light-harvesting, and precursors for many hormones (3, 22). Carotenoids are commercially used as food colorants, animal feed supplements and, more recently, as nutraceuticals and as cosmetic and pharmaceutical compounds (19). Currently, only a few carotenoids can be produced commercially by chemical synthesis, fermentation, or isolation from a few abundant natural sources (13). The increasing industrial importance of carotenoids has led to renewed efforts to develop bioprocesses for large-scale production of a range of carotenoids, including lycopene, β-carotene, and more structurally diverse carotenoids (17, 21, 30, 31, 34). Interestingly, a recent study showed that carotenoids with more diverse structures tend to have higher biological activity than simple structures (1).Previously, in vitro evolution altered the catalytic functions of the carotenoid enzymes phytoene desaturase CrtI and lycopene cyclase CrtY (Fig. (Fig.1)1) and produced novel carotenoid structures of tetradehydrolycopene and torulene in Escherichia coli (27). Furthermore, these in vitro evolved pathways and redesigned C30 carotenoid biosynthetic pathways were successfully extended with additional, wild-type carotenoid modifying enzymes and evolved enzymes (21), generating novel carotenoid structures (26).Open in a separate windowFIG. 1.Reconstructed and redesigned B. linens carotenoid biosynthetic pathway in the heterologous host E. coli. Carotenogenic enzymes of B. linens, P. ananatis, and R. capsulatus, which were used for the biosynthetic pathway reconstruction, are indicated by boldface letters. Idi (IPP isomerase), IspA (FPP synthase), CrtE (GGPP synthase), CrtB (phytoene synthase), CrtI (phytoene desaturase), CrtYcYd (lycopene cyclase), CrtU (β-carotene desaturase), CrtZ (β-carotene hydrolase), CrtY2 (mutant lycopene cyclase), and CrtA (spheroidene monooxygenase). B. linens 3,3′-dihydroxyisorenieratene biosynthesis is indicated by dashed arrows.Beside in vitro evolution (23, 34), combinatorial biosynthesis with carotenoid-modifying enzymes in a heterologous host has often been used to generate structurally novel carotenoids (24, 32). This combinatorial biosynthetic approach basically relies on the functional coordination of pathway enzymes from different sources in a heterologous host (5, 19, 35). Carotenogenic enzymes tend to be promiscuous in their substrate specificity (33) and show unexpected/hidden activities (20) when expressed in heterologous host microorganisms. One example is the unusual activity of diapophytoene desaturase CrtN in E. coli, which resulted in structurally novel compounds (20). Therefore, utilizing the promiscuity of carotenogenic enzymes makes combinatorial biosynthesis one of the most powerful strategies to generate structurally novel carotenoids that cannot be accessed in nature.Yellow colored Brevibacterium linens is commonly used as a food colorant by the cheese industry (15). Interestingly, B. linens is known to synthesize aromatic ring-containing carotenoids, isorenieratene and its hydroxy derivatives (6, 7, 16). They are produced by seven carotenogenic enzymes expressed in B. linens: GGPP synthase CrtE, phytoene synthase CrtE, phytoene desaturase CrtI, lycopene cyclase CrtYcYd, β-carotene desaturase CrtU, and the cytochrome P450 (Fig. (Fig.1).1). Even though the carotenoid biosynthetic pathways of B. linens have been recently studied (6, 10), there have been no systematic functional study of downstream enzymes such as lycopene cyclase CrtYcYd in the biosynthetic pathway of B. linens in a heterologous environment.Therefore, in the present study, for the first time we reconstructed, redesigned, and rationally extended the B. linens carotenoids biosynthetic pathway in E. coli to investigate the flexibility of the pathway enzymes in a heterologous host. Using this approach, we obtained an unexpected structure 3,4-didehydrolycopene, 7,8-dihydro-β-carotene, torulene, and the asymmetric carotenoid, agelaxanthin A, from engineered B. linens carotenoid pathways in E. coli.  相似文献   

19.
Blakeslea trispora produces carotenoids mixtures consisting mainly of lycopene, γ-carotene and β-carotene, together with trace amounts of other carotenoid precursors. The yield of these carotenoids and their composition are greatly affected by culture substrate. The scavenging capacity of carotenoids extract from cultures of B. trispora growing in various substrates was estimated using the 2,2-diphenyl-1-picrylhydrazyl method. Fractions enriched in β-carotene, γ-carotene and lycopene, obtained after column chromatography in alumina basic II, were also examined. Substrates containing starch and oils mixture, Ni2+, and that with pantothenic acid presented higher antioxidant activity. An increase in the antioxidant activity of the crude carotenoid extract compared to that of the isolated fractions enriched in β-carotene, γ-carotene and lycopene respectively, observed in most samples, indicated a possible synergistic effect. The results are of interest and by expanding this study to more substrates and other microorganisms- producing antioxidants, a formulation of extract with high free radical scavenging potential could be produced.  相似文献   

20.
Abstract A screening procedure for carotenoid genes involving heterologous complementation with two different plasmid constructs was developed. The plasmids contained the crtE and crtB genes from Erwinia unredovora together with the phytoene desaturase gene from either Rhodobacter capsulatus or Synechococcus PCC 7942. Transformation in E. coli led to the accumulation of neurosporene and ζ-carotene, respectively. Co-transformation with an Anabaena plasmid library resulted in the isolation of the two plasmids, pZDS1 and pZDS1. Their gene products showed the ability to convert neurosporene and ζ-carotene into lycopene. In contrast, accumulated phytoene could not be converted. We conclude that the cloned gene codes for the carotenoid biosynthesis gene ζ-carotene desaturase ( zds ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号