首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured skin fibroblasts from patients with the lysosomal storage disease galactosialidosis lack a 54-kDa protein which is a precursor of 32-kDa and 20-kDa proteins, which immunoprecipitate with human anti-beta-galactosidase antiserum. The lack of a 32-kDa "protective protein" results in a combined deficiency of beta-galactosidase and sialidase. The mechanism of protection of lysosomal beta-galactosidase against proteolytic degradation is elucidated by sucrose density gradient centrifugation and immunoprecipitation studies. In normal fibroblasts at the low intralysosomal pH, more than 85% of beta-galactosidase exists as a high molecular weight (600-700 kDa) multimer and about 10% as a monomer of 64-kDa. In mutant cells from galactosialidosis patients, the residual enzyme activity, about 10%, is present as a monomer and no multimer exists. After addition of the 54-kDa precursor form of the protective protein, the density pattern of beta-galactosidase in galactosialidosis cells is normalized. Immunoprecipitation studies after sucrose density gradient centrifugation on homogenate and on purified beta-galactosidase from normal fibroblasts show that the protective protein is associated only with the multimeric form of beta-galactosidase. We propose that intralysosomal protection against proteolysis of beta-galactosidase and sialidase is accomplished by aggregation into a high molecular weight complex consisting of multimeric beta-galactosidase, sialidase, and protective protein. The genetic deficiency of the latter, as in galactosialidosis, results in a rapid degradation of monomeric beta-galactosidase and a loss of sialidase activity.  相似文献   

2.
We are investigating the molecular mechanisms involved in the localization of lysosomal enzymes in Dictyostelium discoideum, an organism that lacks any detectable mannose-6-phosphate receptors. The lysosomal enzymes alpha-mannosidase and beta-glucosidase are both initially synthesized as precursor polypeptides that are proteolytically processed to mature forms and deposited in lysosomes. Time course experiments revealed that 20 min into the chase period, the pulse-labeled alpha-mannosidase precursor (140 kD) begins to be processed, and 35 min into the chase 50% of the polypeptides are cleaved to mature 60 and 58-kD forms. In contrast, the pulse-labeled beta-glucosidase precursor (105 kD) begins to be processed 10 min into the chase period, and by 30 min of the chase all of the precursor has been converted into mature 100-kD subunits. Between 5 and 10% of both precursors escape processing and are rapidly secreted from cells. Endoglycosidase H treatment of immunopurified radioactively labeled alpha-mannosidase and beta-glucosidase precursor polypeptides demonstrated that the beta-glucosidase precursor becomes resistant to enzyme digestion 10 min sooner than the alpha-mannosidase precursor. Moreover, subcellular fractionation studies have revealed that 70-75% of the pulse-labeled beta-glucosidase molecules move from the rough endoplasmic reticulum (RER) to the Golgi complex less than 10 min into the chase. In contrast, 20 min of chase are required before 50% of the pulse-labeled alpha-mannosidase precursor exits the RER. The beta-glucosidase and alpha-mannosidase precursor polypeptides are both membrane associated along the entire transport pathway. After proteolytic cleavage, the mature forms of both enzymes are released into the lumen of lysosomes. These results suggest that beta-glucosidase is transported from the RER to the Golgi complex and ultimately lysosomes at a distinctly faster rate than the alpha-mannosidase precursor. Thus, our results are consistent with the presence of a receptor that recognizes the beta-glucosidase precursor more readily than the alpha-mannosidase precursor and therefore more quickly directs these polypeptides to the Golgi complex.  相似文献   

3.
Lysosomal beta-D-galactosidase (beta-gal), the enzyme deficient in the autosomal recessive disorders G(M1) gangliosidosis and Morquio B, is synthesized as an 85-kDa precursor that is C-terminally processed into a 64-66-kDa mature form. The released approximately 20-kDa proteolytic fragment was thought to be degraded. We now present evidence that it remains associated to the 64-kDa chain after partial proteolysis of the precursor. This polypeptide was found to copurify with beta-gal and protective protein/cathepsin A from mouse liver and Madin-Darby bovine kidney cells and was immunoprecipitated from human fibroblasts but not from fibroblasts of a G(M1) gangliosidosis and a galactosialidosis patient. Uptake of wild-type protective protein/cathepsin A by galactosialidosis fibroblasts resulted in a significant increase of mature and active beta-gal and its C-terminal fragment. Expression in COS-1 cells of mutant cDNAs encoding either the N-terminal or the C-terminal domain of beta-gal resulted in the synthesis of correctly sized polypeptides without catalytic activity. Only when co-expressed, the two subunits associate and become catalytically active. Our results suggest that the C terminus of beta-gal is an essential domain of the catalytically active enzyme and provide evidence that lysosomal beta-galactosidase is a two-subunit molecule. These data may give new significance to mutations in G(M1) gangliosidosis patients found in the C-terminal part of the molecule.  相似文献   

4.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

5.
The activity of a lysosomal enzyme, alpha-D-mannosidase (EC 3.2.1.24), increased markedly in normal lymphocytes when they were cultured together with fibroblasts from a patient with an inherited deficiency of this enzyme. Cell-to-cell contact was obligatory for this increase in activity, which also required new protein synthesis. The enzyme induced in the co-cultured lymphocytes was a high molecular weight form of alpha-D-mannosidase that was not detected in lymphocytes cultured alone, which had only the low molecular weight mature enzyme. It was this precursor form alone that was directly transferred to the mannosidosis fibroblasts, where it was present initially in organelles of low density. When the culture period was extended the lymphocyte precursor enzyme was transported to the heavy lysosomes in the recipient cells, and correctly processed to the functionally effective mature enzyme.  相似文献   

6.
Summary Biosynthesis and processing of the protective protein for -galactosidase in normal and galactosialidosis fibroblasts were investigated using specific antiserum preparations. A 45-kd precursor was processed to a mature 30-kd protein in normal fibroblasts. The mature protective protein was not detected in any of the twelve galactosialidosis fibroblast strains examined in this study. The precursor was not detected in two cases and in the others was of heterogeneous molecular weight, i.e., normal, abnormally low, or abnormally high. These molecular abnormalities were not correlated with clinical manifestations of the patients.  相似文献   

7.
Summary The acid hydrolases -glucosidase, -galactosidase,N-acetyl--d-hexosaminidase, -glucocerebrosidase and cathepsin D were studied immunocytochemically in normal and mutant human cells using monoclonal and affinity-purified polyclonal antibodies. For light microscopy, Rhodamine or Fluorescein-labelled conjugates were used, and for electron microscopy protein A-gold conjugates were employed. With the double labelling procedure, it was found that in normal fibroblasts every lysosome contained all the enzymes studied. The method described also enabled us to demonstrate the presence or absence of mutant enzyme protein in fibroblasts derived from patients with a genetic lysosomal enzyme deficiency.Immunoreactive acid hydrolases or their precursor forms were found in the rough endoplasmic reticulum, the cisternae of the Golgi complex, Golgi associated vesicles and lysosomes. This is in agreement with the present concept that the Golgi complex plays an essential role in the processing and targeting of lysosomal enzymes.  相似文献   

8.
The "protective protein" is a glycoprotein that associates with lysosomal beta-galactosidase and neuraminidase and is deficient in the autosomal recessive disorder galactosialidosis. We have isolated the cDNA encoding human "protective protein". The clone recognizes a 2 kb mRNA in normal cells that is not evident in fibroblasts of an early infantile galactosialidosis patient. The cDNA directs the synthesis of a 452 amino acid precursor molecule that is processed in vivo to yield mature "protective protein," a heterodimer of 32 kd and 20 kd polypeptides held together by disulfide bridges. This mature form is also biologically functional since it restores beta-galactosidase and neuraminidase activities in galactosialidosis cells. The predicted amino acid sequence of the "protective protein" bears homology to yeast carboxypeptidase Y and the KEX1 gene product. This suggests a protease activity for the "protective protein."  相似文献   

9.
Cultured skin fibroblasts from patients suffering with infantile generalized N-acetylneuraminic acid (NeuAc) storage disease accumulate free NeuAc in a population of lysosomes less dense than those observed in normal fibroblasts (1.035 vs. greater than 1.07 mean density), as assessed by the distribution of lysosomal enzyme activities and NeuAc on Percoll gradients after subcellular fractionation. In the present study, normal and affected fibroblasts were labeled with [35S]methionine, and cell homogenates or subcellular fractions from Percoll gradients were immunoprecipitated with polyclonal antibodies to lysosomal N-acetyl-beta-hexosaminidase (Hex); immunoprecipitated polypeptides were analyzed by SDS-polyacrylamide gel electrophoresis. The synthesis and initial processing of Hex polypeptides were comparable in normal and affected fibroblasts, but mature polypeptides were quantitatively localized in "buoyant" lysosomes of affected cells, along with Hex activity; moreover, mature alpha-chain of Hex was approximately 2 kDa larger than that observed in normal cells. The molecular weight difference was apparently due to impaired proteolytic processing of alpha-chain in affected fibroblasts, since treatment of immunoprecipitated alpha-chain from normal and affected cells with neuraminidase and endo-beta-N-acetylglucosaminidase H failed to resolve the molecular weight difference. The impaired processing was observed to be persistent (after a chase of up to 200 h), but had no apparent effect on the turnover or activity of Hex in affected fibroblasts. The observed proteolytic processing defect may be primary or secondary in infantile NeuAc storage disease.  相似文献   

10.
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is a lysosomal storage disease with autosomal recessive inheritance caused by deficiency of the enzyme arylsulfatase B. Severe, intermediate, and mild forms of the disease have been described. The molecular correlate of the clinical heterogeneity is not known at present. To identify the molecular defect in a patient with the intermediate form of the disease, arylsulfatase B mRNA from his fibroblasts was reverse-transcribed, amplified by the polymerase chain reaction, and subcloned. Three point mutations were detected by DNA sequence analysis, two of which, a silent A to G transition at nucleotide 1191 and a G to A transition at nucleotide 1126 resulting in a methionine for valine 376 substitution, were polymorphisms. A G to T transversion at nucleotide 410 causing a valine for glycine 137 substitution (G137V) was identified as the mutation underlying the Maroteaux-Lamy phenotype of the patient, who was homozygous for the allele. The kinetic parameters of the mutant arylsulfatase B enzyme toward a radiolabeled trisaccharide substrate were normal excluding an alteration of the active site. The G137V mutation did not affect the synthesis but severely reduced the stability of the arylsulfatase B precursor. While the wild type precursor is converted by limited proteolysis in late endosomes or lysosomes to a mature form, the majority of the mutant precursor was degraded presumably in a compartment proximal to the trans Golgi network and only a small amount escaped to the lysosomes accounting for the low residual enzyme activity in fibroblasts of a patient with the juvenile form of the disease.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2097-2107
Lysosomal enzymes are initially synthesized as precursor polypeptides which are proteolytically cleaved to generate mature forms of the enzymatically active protein. The identification of the proteinases involved in this process and their intracellular location will be important initial steps in determining the role of proteolysis in the function and targeting of lysosomal enzymes. Toward this end, axenically growing Dictyostelium discoideum cells were pulse radiolabeled with [35S]methionine and chased in fresh growth medium containing inhibitors of aspartic, metallo, serine, or cysteine proteinases. Cells exposed to the serine/cysteine proteinase inhibitors leupeptin and antipain and the cysteine proteinase inhibitor benzyloxycarbonyl-L-phenylalanyl-L-alanine-diazomethyl ketone (Z-Phe- AlaCHN2) were unable to complete proteolytic processing of the newly synthesized lysosomal enzymes, alpha-mannosidase and beta-glucosidase. Antipain and leupeptin treatment resulted in both a dramatic decrease in the efficiency of proteolytic processing, as well as a sevenfold increase in the secretion of alpha-mannosidase and beta-glucosidase precursors. However, leupeptin and antipain did not stimulate secretion of lysosomally localized mature forms of the enzymes suggesting that these inhibitors prevent the normal sorting of lysosomal enzyme precursors to lysosomes. In contrast to the results observed for cells treated with leupeptin or antipain, Z-Phe-AlaCHN2 did not prevent the cleavage of precursor polypeptides to intermediate forms of the enzymes, but greatly inhibited the production of the mature enzymes. The accumulated intermediate forms of the enzymes, however, were localized to lysosomes. Finally, fractionation of cell extracts on Percoll gradients indicated that the processing of radiolabeled precursor forms of alpha-mannosidase and beta-glucosidase to intermediate products began in cellular compartments intermediate in density between the Golgi complex and mature lysosomes. The generation of the mature forms, in contrast, was completed immediately upon or soon after arrival in lysosomes. Together these results suggest that different proteinases residing in separate intracellular compartments may be involved in generating intermediate and mature forms of lysosomal enzymes in Dictyostelium discoideum, and that the initial cleavage of the precursors may be critical for the proper localization of lysosomal enzymes.  相似文献   

12.
The "protective protein" is the glycoprotein that forms a complex with the lysosomal enzymes beta-galactosidase and neuraminidase. Its deficiency in man leads to the metabolic storage disorder galactosialidosis. The primary structure of human protective protein, deduced from its cloned cDNA, shows homology to yeast serine carboxypeptidases. We have isolated a full-length cDNA encoding murine protective protein. The nucleotide sequences as well as the predicted amino acid sequences are highly conserved between man and mouse. Domains important for the protease function are completely identical in the two proteins. Both human and mouse mature protective proteins covalently bind radiolabeled diisopropyl fluorophosphate. Transient expression of the murine cDNA in COS-1 cells yields a protective protein precursor of 54 kDa, a size characteristic of the glycosylated form. This cDNA-encoded precursor, endocytosed by human galactosialidosis fibroblasts, is processed into a 32- and a 20-kDa heterodimer and corrects beta-galactosidase and neuraminidase activities. A tissue-specific expression of protective protein mRNA is observed when total RNA from different mouse organs is analyzed on Northern blots.  相似文献   

13.
The nature of the molecular defect resulting in the beta-galactosidase deficiency in different forms of GM1-gangliosidosis and mucopolysaccharidosis IV B (Morquio B syndrome) was investigated. Normal and mutant cultured skin fibroblasts were labeled in vivo with [3H]leucine and immunoprecipitation studies with human anti-beta-galactosidase antiserum were performed, followed by polyacrylamide gel electrophoresis and fluorography. In Morquio B syndrome, the mutation does not interfere with the normal processing and intralysosomal aggregation of beta-galactosidase. In cells from infantile and adult GM1-gangliosidosis, 85-kDa precursor beta-galactosidase was found to be synthesized normally but more than 90% of the enzyme was subsequently degraded at one of the early steps in posttranslational processing. The residual 5-10% beta-galactosidase activity in adult GM1-gangliosidosis is 64-kDa mature lysosomal enzyme with normal catalytic properties but with a reduced ability of the monomeric form to aggregate into high molecular weight multimers. Knowledge of the exact nature of the molecular defect underlying beta-galactosidase deficiency in man may lead to a better understanding of the clinical and pathological heterogeneity among patients with different types of GM1-gangliosidosis and Morquio B syndrome.  相似文献   

14.
The effect of swainsonine, an inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidase, on the synthesis, processing, and turnover of two glycoproteins, lysosomal beta-galactosidase and lysosomal beta-glucuronidase, has been studied in cultured mouse peritoneal macrophages. No effect of the inhibitor on the relative rates of synthesis of the precursor form of either enzyme was observed. On the other hand, carbohydrate processing of beta-galactosidase and beta-glucuronidase was markedly altered by swainsonine, consistent with a blockage by the inhibitor of the removal of the alpha-1,3- and alpha-1,6-linked mannose residues which occurs in normal processing. In homogenates of both normal and swainsonine-treated cells, the precursor forms of the enzymes were found exclusively in the light membrane fraction on Percoll gradients and the mature forms exclusively in the lysosomal fractions indicating that translocation from Golgi to lysosomes and proteolytic processing in the lysosome were not impaired by the presence of abnormal oligosaccharide side chains. There was no detectable effect of swainsonine during a 4-day chase period on the total cellular turnover of these enzymes which involves two processes, secretion and degradation. In the absence of swainsonine, secretion represented about 40% of the total turnover of beta-galactosidase and about 50% with beta-glucuronidase. The presence of swainsonine increased these proportions to about 60 and 70%, respectively.  相似文献   

15.
Intracellular transport of two lysosomal enzymes, acid alpha-glucosidase and beta-hexosaminidase, was analyzed in human fibroblasts. The precursors of beta-hexosaminidase in normal fibroblasts were released from the membrane fraction by treatment with mannose 6-phosphate, but the precursor of alpha-glucosidase was not. Percoll density gradient centrifugation revealed a normal amount of acid alpha-glucosidase activity in heavy lysosomes in I-cell disease fibroblasts despite impaired maturation and defective phosphorylation, and beta-hexosaminidase activity was markedly reduced in lysosomes. It was concluded that the membrane-bound precursor of acid alpha-glucosidase is transported to lysosomes by a phosphomannosyl receptor-independent system although the enzyme lacks the recognition marker for the phosphomannosyl receptor and processing of an intermediate form to mature forms does not occur in this disease.  相似文献   

16.
Esterase and deamidase activities at pH 7.0 and carboxypeptidase activity at pH 5.7 were markedly low or deficient in seven galactosialidosis fibroblast strains with deficient activity of "protective protein" for lysosomal beta-galactosidase and neuraminidase. No simultaneous deficiency of these three enzyme activities was observed in other lysosomal disease fibroblasts examined in this study. This result strongly suggests that "protective protein" is identical with a multifunctional protein with esterase/deamidase/carboxypeptidase activities and its mutation in galactosialidosis results in deficiency of these three enzyme activities.  相似文献   

17.
Radiolabel pulse-chase and subcellular fractionation procedures were used to analyze the transport, proteolytic processing, and sorting of two lysosomal enzymes in Dictyostelium discoideum cells treated with the weak bases ammonium chloride and chloroquine. Dictyostelium lacks detectable cation-independent mannose-6-phosphate receptors and represents an excellent system to investigate alternative mechanisms for lysosomal enzyme targeting. Exposure of growing cells to ammonium chloride, which increased the pH in intracellular vacuoles from 5.4 to 5.8-6.1, slowed but did not prevent the proteolytic processing and correct localization of pulse-radiolabeled precursors to the lysosomal enzymes alpha-mannosidase and beta-glucosidase. Additionally, ammonium chloride did not affect transport of the enzymes to the Golgi complex, as they acquired resistance to the enzyme endoglycosidase H at the same rate as in control cells. When the pH of lysosomal and endosomal organelles was raised to 6.4 with higher concentrations of ammonium chloride, the percentage of secreted (apparently mis-sorted) precursor polypeptides increased slightly, but proteolytic processing of intermediate forms of lysosomal enzymes to mature forms was greatly reduced. The intermediate and mature forms of alpha-mannosidase and beta-glucosidase did, however, accumulate intracellularly in vesicles similar in density to lysosomes. In contrast, in cells exposed to low concentrations of chloroquine the intravacuolar pH increased only slightly (to 5.7); however, enzymes were inefficiently processed and, instead, rapidly secreted as precursor molecules. Experiments involving the addition of chloroquine at various times during the chase of pulse-radiolabeled cells demonstrated that this weak base acted on a distal Golgi or prelysosomal compartment to prevent the normal sorting of lysosomal enzymes. These results suggest that although acidic endosomal/lysosomal compartments may be important for the complete proteolytic processing of lysosomal enzymes in Dictyostelium, low pH is not essential for the proper targeting of precursor polypeptides. Furthermore, certain amines may induce mis-sorting of these enzymes by pH-independent mechanisms.  相似文献   

18.
Human lysosomal N-acetyl-alpha-neuraminidase is deficient in two lysosomal storage disorders, sialidosis, caused by structural mutations in the neuraminidase gene, and galactosialidosis, in which a primary defect of protective protein/cathepsin A (PPCA) leads to a combined deficiency of neuraminidase and beta-D-galactosidase. These three glycoproteins can be isolated in a high molecular weight multi-enzyme complex, and the enzymatic activity of neuraminidase is contingent on its interaction with PPCA. To explain the unusual need of neuraminidase for an auxiliary protein, we examined, in transfected COS-1 cells, the effect of PPCA expression on post-translational modification, turnover and intracellular localization of neuraminidase. In pulse-chase studies, we show that the enzyme is synthesized as a 46 kDa glycoprotein, which is poorly phosphorylated, does not undergo major proteolytic processing and is secreted. Importantly, its half-life is not altered by the presence of PPCA. However, neuraminidase associates with the PPCA precursor shortly after synthesis, since the latter protein co-precipitates with neuraminidase using anti-neuraminidase antibodies. We further demonstrate by subcellular fractionation of transfected cells that neuraminidase segregates to mature lysosomes only when accompanied by wild-type PPCA, but not by transport-impaired PPCA mutants. These data suggest a novel role for PPCA in the activation of lysosomal neuraminidase, that of an intracellular transport protein.  相似文献   

19.
In investigations on the intracellular transport route(s) of lysosomal enzymes in polarized epithelial cells, we used immunocytochemical methods to localize lysosomal alpha-glucosidase in human small-intestinal epithelial cells. Two monoclonal antibodies which can discriminate between different biosynthetic forms of this enzyme were used. One monoclonal antibody, 43D1, which recognizes all forms of the enzyme, showed labeling of the Golgi apparatus, the lysosomes and, unexpectedly, of the brush border of the cells. Multivesicular bodies were free of label. In contrast, monoclonal antibody 43G8, which recognizes all forms except the 110,000 Da precursor of alpha-glucosidase, showed labeling of the lysosomes only. This leads us to conclude that the 110,000 Da precursor form of alpha-glucosidase is present in the Golgi apparatus and the brush border of human small-intestinal epithelial cells. Moreover, biochemical experiments show that this precursor copurifies with sucrase, a typical brush-border marker, when a partially purified microvilli fraction is prepared.  相似文献   

20.
Sialidosis and galactosialidosis are lysosomal storage diseases caused by the genetic defects of lysosomal sialidase (neuraminidase-1; NEU1) and lysosomal protective protein/cathepsin A (PPCA), respectively, associated with a NEU1 deficiency, excessive accumulation of sialylglycoconjugates, and development of progressive neurosomatic manifestations; in addition, the latter disorder is accompanied by simultaneous deficiencies of beta-galactosidase and cathepsin A. We demonstrated that a few soluble N-glycosylated proteins carrying sialyloligosaccharides sensitive to glycopeptidase F (GPF) can be specifically detected in cultured fibroblasts from sialidosis and galactosialidosis cases by blotting with a Maackia amurensis (MAM) lectin. We also examined the therapeutic effects of normal gene transfer and enzyme replacement by evaluating the decreases in sialylglycoconjugates accumulated in fibroblasts with these NEU1 deficiencies. The specific N-glycosylated proteins detected on MAM lectin blotting as well as the granular lysosomal fluorescence due to an avidin-FITC/biotinylated MAM lectin conjugate in sialidosis and galactosialidosis fibroblasts disappeared in parallel with the restoration of the intracellular NEU1 activity after transfection of the recombinant NEU1 fused to HA tag sequence and the wild-type PPCA cDNA as well as administration of the recombinant PPCA precursor protein. The detection method for the abnormal sialylglycoproteins in cultured cells involving MAM lectin was demonstrated to be useful not only for biochemical and diagnostic analyses of NEU1 deficiencies but also for therapeutic evaluation of these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号