首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the relationship between phagosome acidification and phagosome-lysosome fusion events using phagocytized Glugea hertwigi spores. The incidence of lysosome fusion with Glugea spores in phagosomes of mouse peritoneal macrophages and of Tetrahymena was monitored using colloidal gold and acridine orange as labels for secondary lysosomes. Over 80% of the Glugea phagosomes remained segregated from the labeled compartments in macrophages after 60 min; this inhibition of fusion was still evident after 4 h. In Tetrahymena, Glugea spores also showed a high capacity to block fusion with secondary lysosomes (67%); however, spores coated with cationized ferritin showed an 80% fusion rate with labeled acidic compartments (i.e. lysosomes) after 60 min with both Tetrahymena and macrophages. The pH of phagosome compartments was monitored by measuring the emissions of fluorescein isothiocyanate (FITQ-labeled Glugea ingested by Tetrahymena. Tetrahymena phagosomes with FITC-Glugea did not acidify within the first hour after phagocytosis; however, phagosomes with cationized ferritin-labeled Glugea underwent acidification during this time period. This acidification took place although the capability of the host cells' lysosomes to fuse was blocked by pretreatment with poly-D-glutamic acid. The cationized ferritin bound to Glugea spores was uncoupled from the spore wall prior to fusion with colloidal gold-labeled compartments. In vitro testing showed that ferritin dissociation requires an acid pH, indicating that phagosomes acidify prior to lysosome fusion.  相似文献   

2.
The participation of cell surface anionic sites on the interaction between tachyzoites of Toxoplasma gondii and macrophages and the process of phagosome-lysosome fusion were analyzed using cationized ferritin as a marker of cell surface anionic sites and albumin-colloidal gold as a marker for secondary lysosomes. Incubation of either the macrophages or the parasites with cationized ferritin before the interaction increased the ingestion of parasites by macrophages. Anionic sites of the macrophage's surface, labeled with cationized ferritin before the interaction, were internalized together with untreated parasites. However, after interaction with glutaraldehyde-fixed or specific antibody-coated parasites, the cationized ferritin particles were observed in endocytic vacuoles which did not contain parasites. Macrophages previously labeled with albumin-gold at 37 degrees C, were incubated in the presence of cationized ferritin at 4 degrees C and then incubated with untreated or specific antibody-coated parasites. After interaction with opsonized parasites, the colloidal gold particles were observed in the parasitophorous vacuoles while the cationized ferritin particles were observed in cytoplasmic vesicles. However, when the interaction was carried out with untreated parasites, the parasitophorous vacuoles exhibited ferritin particles while the colloidal gold particles were observed in cytoplasmic vesicles. These observations, in association with studies previously reported, suggest that the state of the parasite surface determines the mechanism of parasite entry into the macrophage, the composition of the membrane lining the parasitophorous vacuole and the ability of lysosomes to fuse with the vacuoles.  相似文献   

3.
G Ferrari  H Langen  M Naito  J Pieters 《Cell》1999,97(4):435-447
Mycobacteria are intracellular pathogens that can survive within macrophage phagosomes, thereby evading host defense strategies by largely unknown mechanisms. We have identified a WD repeat host protein that was recruited to and actively retained on phagosomes by living, but not dead, mycobacteria. This protein, termed TACO, represents a component of the phagosome coat that is normally released prior to phagosome fusion with or maturation into lysosomes. In macrophages lacking TACO, mycobacteria were readily transported to lysosomes followed by their degradation. Expression of TACO in nonmacrophages prevented lysosomal delivery of mycobacteria and prolonged their intracellular survival. Active retention of TACO on phagosomes by living mycobacteria thus represents a mechanism preventing cargo delivery to lysosomes, allowing mycobacteria to survive within macrophages.  相似文献   

4.
For some hours after ingestion of Saccharomyces cerevisiae by cultured macrophages, the phagosome membranes almost all appeared to be applied closely to the cell walls of the enclosed yeasts; most of these “tight” phagosomes showed evidence of having fused with ferritin-labelled secondary lysosomes. If the macrophages were pretreated with any of several polyanionic inhibitors of phagosome-lysosome (P-LF) (e.g. poly- -glutamic acid) (PGA), and were fixed for transmission electron microscopy (EM) 1 h or more after ingestion of the yeasts, the phagosome membrane frequently appeared to be separated from the yeast cell wall by a wide electron-lucent zone. These “loose”, unfused, phagosomes in PGA-pretreated macrophages developed from tight phagosomes (also unfused), formed immediately after ingestion. The development of loose phagosome membranes could be prevented or rapidly reversed in PGA-treated macrophages by exposing them to chloroquine, one of a number of lipophilic secondary and tertiary amines that enhance P-LF; this exposure also partly reversed the PGA-induced inhibition of P-LF. The evidence suggests that the inhibitors of P-LF evoke loose membrane formation through their effect on the fusion process. On the other hand, reversal of this inhibition of fusion appears to follow the resumption of tightness brought about by chloroquine. The polyanionic inhibitors accumulate in secondary lysosomes, through which their effect on P-LF is presumably mediated. The phenomenon of loose phagosome formation, however, during the inhibition of fusion indicates that other cytoplasmic elements must be involved. The possibility that the depletion of the intracellular free calcium level, by complexing with polyanions, is a relevant factor, is briefly discussed.  相似文献   

5.
Phagosomes are membrane-bound vesicles, formed by the receptor-mediated internalization of particulate ligands, which exchange soluble and membrane proteins with other endocytic compartments as a part of their maturation process. This exchange of material is undoubtedly mediated by fusion of phagosomes with other membrane-bound compartments of the endocytic pathway. By using a particulate probe (fixed Staphylococcus aureus coated with mouse anti-dinitrophenol monoclonal antibody) localized in phagosomes and a soluble probe (dinitrophenol-derivitized beta-glucuronidase) internalized by receptor-mediated endocytosis, we have studied phagosome-endosome and phagosome-lysosome fusion in intact cells and in a cell-free system. Vesicle fusion was assessed by measuring beta-glucuronidase activity associated with S. aureus particles after lysis of the membranes. In intact macrophages, newly formed phagosomes fused with early endosomes and with lysosomes. Fusion with lysosomes was observed to commence after a short lag period of about 5 min. In broken-cell preparations, phagosomes were able to fuse with early endosomes. It was not possible to reconstitute phagosome-lysosome fusion in vitro. In vitro phagosome-endosome fusion required energy and cytosolic- and membrane-associated proteins. A nonhydrolyzable analog of GTP stimulated fusion at low cytosol concentrations and inhibited fusion at high cytosol concentrations. These observations indicate that the mechanisms mediating phagosome-endosome fusion are similar to those described for endosome-endosome fusion. Our results suggest that exchange of material with endosomes is an important step in the process of phagosome maturation.  相似文献   

6.
Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol‐3‐phosphate, an early endosomal regulator. However, phosphatidylinositol‐3‐phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol‐3,5‐bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol‐3,5‐bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor‐mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol‐3‐phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol‐3,5‐bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.   相似文献   

7.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

8.
Zhao  Shuqi  Xi  Dalin  Cai  Junwei  Chen  Wenting  Xiang  Jing  Peng  Na  Wang  Juan  Jiang  Yong  Mei  Zhuzhong  Liu  Jinghua 《中国科学:生命科学英文版》2020,63(3):401-409
Bacterial cell wall component-induced tolerance represents an important protective mechanism during microbial infection.Tolerance induced by the TLR2 agonist bacterial lipoprotein (BLP) has been shown to attenuate the inflammatory response,and simultaneously to augment antimicrobial function,thereby conferring its protection against microbial sepsis.However,the underlying mechanism by which BLP tolerance augments bactericidal activity has not been fully elucidated.Here,we reported that the induction of BLP tolerance in murine macrophages upregulated the expression of Rab20,a membrane trafficking regulator,at both the mRNA and protein levels upon bacterial infection.The knockdown of Rab20 with Rab20 specific siRNA(siRab20) did not affect the phagocytosis of Escherichia coli (E.coli),but substantially impaired the intracellular killing of the ingested E.coli in BLP-tolerized macrophages.Furthermore,Rab20 was associated with GFP-E.coli containing phagosomes,and BLP tolerization resulted in the enhanced maturation of GFP-E.coli-containing phagosomes associated with Rab20 and strong lysosomal acidification.The knockdown of Rab20 substantially diminished lysosome acidification and disturbed the fusion of GFP-E.coli containing phagosomes with lysosomes in BLP-tolerized macrophages.These results demonstrate that Rab20 plays a critical role in BLP tolerization-induced augmentation of bactericidal activity via promoting phagosome maturation and the fusion of bacteria containing phagosomes with lysosomes.  相似文献   

9.
Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mo infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mo with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mo phagosomes.  相似文献   

10.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

11.
Macrophages are key to the pathogenesis of atherosclerosis. They take up and store excessive amounts of cholesterol associated with modified low density lipoprotein, eventually becoming foam cells that display altered immune responsiveness. We studied the effects of cholesterol accumulation on phagosome formation and maturation, using lipid transport antagonists and cholesterol transport-deficient mutants. In macrophages treated with U18666A, a transport antagonist that prevents cholesterol exit from late endosomes/lysosomes, the early stages of maturation proceeded normally; phagosomes acquired Rab5, phosphatidylinositol 3-phosphate, and EEA1 and merged with LAMP-containing vesicles. However, fusion with lysosomes was impaired. Rab7, which is required for phagolysosome formation, was acquired by phagosomes but remained inactive. Maturation was also studied in fibroblasts from Niemann-Pick type C individuals that have defective cholesterol transport. Transfection of FcgammaIIA receptors was used to confer phagocytic capability to these fibroblasts. Niemann-Pick type C phagosomes failed to fuse with lysosomes, whereas wild type fibroblasts formed normal phagolysosomes. These findings indicate that cholesterol accumulation can have a detrimental effect on phagosome maturation by impairing the activation of Rab7, sequestering it and its effectors in cholesterol-enriched multilamellar compartments.  相似文献   

12.
Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages—two extremes of the polarization spectrum—to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn2+-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively.  相似文献   

13.
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.  相似文献   

14.
Phagocytic entry of mycobacteria into macrophages requires the presence of cholesterol in the plasma membrane. This suggests that pathogenic mycobacteria may require cholesterol for their subsequent intra-cellular survival in non-maturing phagosomes. Here we report on the effect of cholesterol depletion on pre-existing phagosomes in mouse bone marrow-derived macrophages infected with Mycobacterium avium. Cholesterol depletion with methyl-beta-cyclodextrin resulted in a loosening of the close apposition between the phagosome membrane and the mycobacterial surface, followed by fusion with lysosomes. The resulting phagolysosomes then autonomously executed autophagy, which did not involve the endoplasmic reticulum. After 5 h of depletion, intact mycobacteria had accumulated in large auto-phagolysosomes. Autophagy was specific for phagolysosomes that contained mycobacteria, as it did not involve latex bead-containing phagosomes in infected cells. Upon replenishment of cholesterol, mycobacteria became increasingly aligned to the lysosomal membrane, from where they were individually sequestered in phagosomes with an all-around closely apposed phagosome membrane and which no longer fused with lysosomes. These observations indicate that, cholesterol depletion (i) resulted in phagosome maturation and fusion with lysosomes and (ii) caused mycobacterium-containing phagolysosomes to autonomously undergo autophagy. Furthermore, (iii) mycobacteria were not killed in auto-phagolysosomes, and (iv) cholesterol replenishment enabled mycobacterium to rescue itself from autophagic phagolysosomes to again reside individually in phagosomes which no longer fused with lysosomes.  相似文献   

15.
The lipophosphoglycan (LPG) of Leishmania promastigotes plays key roles in parasite survival in both insect and mammalian hosts. Evidence suggests that LPG decreases phagosome fusion properties at the onset of infection in macrophages. The mechanisms of action of this molecule are, however, poorly understood. In the present study, we used a panoply of Leishmania mutants displaying modified LPG structures to determine more precisely how LPG modulates phagosome-endosome fusion. Using an in vivo fusion assay measuring, at the electron microscope, the transfer of solute materials from endosomes to phagosomes, we provided further evidence that the repeating Gal(beta1,4)Man(alpha1-PO4) units of LPG are responsible for the alteration in phagosome fusion. The inhibitory effect of LPG on phagosome fusion was shown to be more potent towards late endocytic organelles and lysosomes than early endosomes, explaining how Leishmania promastigotes can avoid degradation in hydrolase-enriched compartments. The involvement of other repeating unit-containing molecules, including the secreted acid phosphatase, in the inhibition process was ruled out, as an LPG-defective mutant (Ipg1-) which secretes repeating unit-containing glycoconjugates was present in highly fusogenic phagosomes. In L. major, oligosaccharide side-chains of LPG did not contribute to the inhibition process, as Spock, an L. major mutant lacking LPG side-chains, blocked fusion to the same extent as wild-type parasites. Finally, dead parasites internalized from the culture medium were not as efficient as live parasites in altering phagosome-endosome fusion, despite the presence of LPG. However, the killing of parasites with vital dyes after their sequestration in phagosomes had no effect on the fusion properties of this organelle. Collectively, these results suggest that living promastigotes displaying full-length cell surface LPG can actively influence macrophages at an early stage of phagocytosis to generate phagosomes with poor fusogenic properties.  相似文献   

16.
The study of fusion of phagosomes with secondary lysosomes in macrophages is facilitated by assessing transfer of fluorescent or electron-opaque markers (or both) from the lysosomes to the phagosomes. When certain virulent viable pathogens are phagocytosed by mouse peritoneal macrophages, phagosome-lysosome fusion (P-LF) is inhibited. Nonviable counterparts ordinarily cannot impose this block. A similar, but spurious, block to P-LF seems to be mediated from the lysosomal domain following sequestration of certain polyanionic substances. This block has been judged to be relieved by, for example, heat-killed yeasts and various viable bacteria designated as fusion-inducing microorganisms, acting from the phagosome. In this study we tested this concept and believed it to be unfounded. Macrophages labeled with Thorotrast and incubated with dextran sulfate were offered a variety of viable and heat-killed microorganisms for phagocytosis: Saccharomyces cerevisiae, Mycobacterium lepraemurium, Streptococcus faecalis, and Escherichia coli. By electron microscopy, a transfer of Thorotrast to phagosomes up to 18 h was seen to be highly suppressed as compared with controls, but was not notably different for any of the targets, whether viable or not. Instead, inert 0.45-micron carboxylated polystyrene beads (the smallest target) showed the most delivery of marker. If polyanionic agents truly inhibited fusion, then "fusiogenic" microorganisms should free the marker for delivery. If polyanions do not inhibit P-LF and only trap the marker, the behavior of the various targets would correspond to what we found.  相似文献   

17.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

18.
A morphometric analysis was made to study membrane traffic in bone marrow-derived macrophages, containing phagosomes with partially degraded Bacillus subtilis. Cell surface glycoproteins, labeled with radioactive galactose by terminal glycosylation, provided a covalent autoradiographic membrane marker. Membrane compartments were characterized in terms of cytochemical staining for horseradish peroxidase taken up by receptor-mediated endocytosis. The area, composition, and exchange rates of endocytic membrane compartments were measured as in a previous analysis for non-infected macrophages, devoid of phagosomes. In direct comparison with this earlier study, the present data allowed an assessment of the involvement of phagosomes in the interactions between endocytic membrane compartments. The presence of phagosomes led to a 30% reduction of lysosomal membrane area. The rate at which cell surface-derived label flowed into the lysosomal membrane pool was reduced by the same fractional amount. This suggested a linear relationship between flow rate and membrane area. The initial flow rate of label into phagosomes was higher than expected, based on their membrane area being only about 60% that of lysosomes. This rate could only be measured during the early phase of the experiments when phagosomes were younger, therefore displaying a fast exchange rate, reminiscent of the endosome compartment. However, steady-state conditions, at late times, strongly suggested that phagosomes with degraded contents finally acquire membrane of lysosomal origin. First, the composition of phagosome membrane became the same as that of lysosomes, remaining unchanged as compared to non-infected cells. Second, the membrane area of phagosomes amounted to the loss of lysosomal membrane area in infected cells.  相似文献   

19.
The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes.  相似文献   

20.
《Biophysical journal》2022,121(3):459-469
Immune cells degrade internalized pathogens in vesicle compartments called phagosomes. Many intracellular bacteria induce homotypic phagosome fusion to survive in host cells, but the fusion interaction between phagosomes and its consequence for phagosome function have scarcely been studied. Here, we characterize homotypic fusion between phagosomes in macrophages and identify how such interactions impact the degradative capacity of phagosomes. By developing a series of particle sensors for measuring biochemical changes of single phagosomes, we show that phagosomes undergo stable fusion, transient “kiss-and-run” fusion, or both in succession. Super-resolution three-dimensional fluorescence microscopy revealed that stably fused phagosomes are connected by membrane “necks” with submicron–sized fusion pores. Furthermore, we demonstrate that, after stable fusion, phagosomes have leaky membranes and thereby impaired degradative functions. Our findings, based on phagosomes that contain synthetic particles, illustrate that homotypic fusion is not exclusive to phagosomes that encapsulate pathogens, as previously believed. The physical process of homotypic fusion is alone sufficient to perturb the degradative functions of phagosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号