首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OVCA1, also known as DPH2L1, is a tumor suppressor gene associated with ovarian carcinoma and other tumors. Ovca1 homozygous mutant mice die at birth with developmental delay and cell-autonomous proliferation defects. Ovca1 heterozygous mutant mice are tumor-prone but rarely develop ovarian tumors. OVCA1 appears to be the homolog of yeast DPH2, which participates in the first biosynthetic step of diphthamide, by modification of histidine on translation elongation factor 2 (EF-2). Yeast dph2 mutants are resistant to diphtheria toxin, which catalyses ADP ribosylation of EF-2 at diphthamide. Thus, there appears to be growing evidence implicating alterations in protein translation with tumorigenesis.  相似文献   

2.
OVCA1 is a tumor suppressor identified by positional cloning from chromosome 17p13.3, a hot spot for chromosomal aberration in breast and ovarian cancers. It has been shown that expression of OVCA1 is reduced in some tumors and that it regulates cell proliferation, embryonic development, and tumorigenesis. However, the biochemical function of OVCA1 has remained unknown. Recently, we isolated a novel mutant resistant to diphtheria toxin and Pseudomonas exotoxin A from the gene trap insertional mutants library of Chinese hamster ovary cells. In this mutant, the Ovca1 gene was disrupted by gene trap mutagenesis, and this disruption well correlated with the toxin-resistant phenotype. We demonstrated direct evidence that the tumor suppressor OVCA1 is a component of the biosynthetic pathway of diphthamide on elongation factor 2, the target of bacterial ADP-ribosylating toxins. A functional genetic approach utilizing the random gene trap mutants library of mammalian cells should become a useful strategy to identify the genes responsible for specific phenotypes.  相似文献   

3.
OVCA1, a tumor suppressor gene, is deleted or lower expressed in about 80% of ovarian cancer. Over expression of OVCA1 in human ovarian cancer A2780 cells inhibits cell proliferation and arrests cells in G1 stage. However, the fact that the molecular mechanism of OVCA1 inhibits cell growth is presently elusive. Here we investigated the potential signaling pathway induced by over-expression of OVCA1. Our results show that over-expression of human OVCA1 in ovarian cancer cells A2780 leads to down-regulation of cyclin D1, and up-regulation of p16, but no effect on the expression of NF-κB. It indicates that OVCA1 could inhibit the proliferation of ovarian cancer cell A2780 by p16/cyclin D1 pathway, but not by NF-κB.  相似文献   

4.
5.
6.
Butchbach ME  Lai L  Lin CL 《Gene》2002,292(1-2):81-90
Glutamate is an important amino acid implicated in energy metabolism, protein biosynthesis and neurotransmission. The Na(+)-dependent high-affinity excitatory amino acid transporter EAAT3 (EAAC1) facilitates glutamate uptake into most cells. Recently, a novel rat EAAT3-interacting protein called GTRAP3-18 has been identified by a yeast two-hybrid screening. GTRAP3-18 functions as a negative modulator of EAAT3-mediated glutamate transport. In order to further understand the function and regulation of GTRAP3-18, we cloned the mouse orthologue to GTRAP3-18 and determined its gene structure and its expression pattern. GTRAP3-18 encodes a 188-residue hydrophobic protein whose sequence is highly conserved amongst vertebrates. Mouse and human GTRAP3-18 genes contain three exons separated by two introns. The GTRAP3-18 gene is found on mouse chromosome 6D3 and on human chromosome 3p14, a susceptibility locus for cancer and epilepsy. GTRAP3-18 protein and RNA were found both in neuronal rich regions of the brain and in non-neuronal tissues such as the kidney, heart and skeletal muscle. Mouse GTRAP3-18 inhibited EAAT3-mediated glutamate transport in a dose-dependent manner. These studies show that GTRAP3-18 is a ubiquitously expressed protein that functions as a negative regulator of EAAT3 function.  相似文献   

7.
8.
9.
Altered expression of alphav integrins plays a critical role in tumor growth, invasion, and metastasis. In this study, we show that normal human epithelial ovarian cell line, HOSE, and ovarian cancer cell lines, OVCA 429, OVCA 433, and OVHS-1, expressed alphav integrin and associated beta1, beta3, and beta5 subunits, but only ovarian cancer cell lines OVCA 429 and OVCA 433 expressed alphavbeta6 integrin. The expression of alphavbeta6 in OVCA 429 and OVCA 433 was far higher than alphavbeta3 and alphavbeta5 integrin and correlated with high p42/p44 mitogen activated protein kinase (MAPK) activity and high secretion of high molecular weight urokinase plasminogen activator (HMW-uPA), pro-metalloproteinase 2 and 9 (pro-MMP-9 and pro-MMP-2). In contrast to HOSE and OVHS 1, OVCA 433 and OVCA 429 exhibited approximately 2-fold more plasminogen-dependent [3H]-collagen type IV degradation. Plasminogen-dependent [3H]-collagen IV degradation was inhibited by inhibitor of uPA (amiloride) and MMP (phenanthroline) and by antibodies against uPA or MMP-9 or alphavbeta6 integrin, indicating the involvement of alphavbeta6 integrin, uPA and MMP-9 in the process. The alphavbeta6 correlated increase in HMW-uPA and pro-MMP secretion could be inhibited by tyrosine kinase inhibitor genistein or the MEK 1 inhibitor U0126, consistent with a role of active p42/44 MAPK in the elevation of uPA, MMP-9, and MMP-2 secretion. Under similar conditions, genistein and U0126 inhibited plasminogen-dependent [3H]-collagen type IV degradation. These data suggest that sustained elevation of p42/44 MAPK activity may be required for the co-expression of alphavbeta6 integrin, which in turn may regulate the malignant potential of ovarian cancer cells via proteolytic mechanisms.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The reciprocally imprinted H19 and Igf2 genes form a co-ordinately regulated 130 kb unit in the mouse controlled by widely dispersed enhancers, epigenetically modified silencers and an imprinting control region (ICR). Comparative human and mouse genomic sequencing between H19 and Igf2 revealed two novel regions of strong homology upstream of the ICR termed H19 upstream conserved regions (HUCs). Mouse HUC1 and HUC2 act as potent enhancers capable of driving expression of an H19 reporter gene in a range of mesodermal tissues. Intriguingly, the HUC sequences are also transcribed bi-allelically in mouse and human, but their expression pattern in neural and endodermal tissues in day 13.5 embryos is distinct from their enhancer function. The location of the HUC mesodermal enhancers upstream of the ICR and H19, and their capacity for interaction with both H19 and Igf2 requires critical re-evaluation of the cis-regulation of imprinted gene expression of H19 and Igf2 in a range of mesodermal tissues. We propose that these novel sequences interact with the ICR at H19 and the epigenetically regulated silencer at differentially methylated region 1 (DMR1) of Igf2.  相似文献   

18.
19.
We have previously isolated and characterized a mouse cDNA orthologous to the human synovial sarcoma associated SS18 (formerly named SSXT and SYT) cDNA. Here, we report the characterization of the genomic structure of the mouse Ss18 gene. Through in silico methods with sequence information contained in the public databases, we did the same for the human SS18 gene and two human SS18 homologous genes, SS18L1 and SS18L2. In addition, we identified a mouse Ss18 processed pseudogene and mapped it to chromosome 1, band A2-3. The mouse Ss18 gene, which is subject to extensive alternative splicing, is made up of 11 exons, spread out over approximately 45 kb of genomic sequence. The human SS18 gene is also composed of 11 exons with similar intron-exon boundaries, spreading out over about 70 kb of genomic sequence. One alternatively spliced exon, which is not included in the published SS18 cDNA, corresponds to a stretch of sequence which we previously identified in the mouse Ss18 cDNA. The human SS18L1 gene, which is also made up of 11 exons with similar intron-exon boundaries, was mapped to chromosome 20 band q13.3. The smaller SS18L2 gene, which is composed of three exons with similar boundaries as the first three exons of the other three genes, was mapped to chromosome 3 band p21. Through sequence and mutation analyses this gene could be excluded as a candidate gene for 3p21-associated renal cell cancer. In addition, we created a detailed BAC map around the human SS18 gene, placing it unequivocally between the CA-repeat marker AFMc014wf9 and the dihydrofolate reductase pseudogene DHFRP1. The next gene in this map, located distal to SS18, was found to be the TBP associated factor TAFII-105 (TAF2C2). Further analogies between the mouse Ss18 gene, the human SS18 gene and its two homologous genes were found in the putative promoter fragments. All four promoters resemble the promoters of housekeeping genes in that they are TATA-less and embedded in canonical CpG islands, thus explaining the high and widespread expression of the SS18 genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号