首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:1,自引:0,他引:1  
Energy, climate, habitat heterogeneity, and human activity are important correlates of spatial variation in species richness. We examined the correlation between species richness and these variables using the birds that breed in northern Taiwan. We conducted general linear models (GLMs) and spatial correlation models to examine the relationship between bird species richness (BSR) and environmental variables. We found that normalized difference vegetation index (NDVI) was the most important predictor of BSR. We suggest productivity is the primary process of BSR. Additionally, we hypothesized that scale dependency might exist in the relationship between BSR and NDVI in Taiwan. Human population density, the second most important factor, was inversely correlated with BSR. The factor and BSR did not have similar response to NDVI, which contradicted observations in most of the previous studies on human population vs. species richness. We proposed that the human population density had an effect on NDVI, which in turn had an effect on BSR. Moreover, we hypothesized that the contradiction between our study and the previous studies might arise from a higher level of human disturbance in Taiwan than in other areas. The necessity of conserving native species in intensively developed lowlands of Taiwan cannot be overemphasized. Number of land cover type was another significant predictor of BSR. Habitat heterogeneity may have an effect on BSR in Taiwan.  相似文献   

2.
Tropical forest canopies house most of the globe''s diversity, yet little is known about global patterns and drivers of canopy diversity. Here, we present models of ant species density, using climate, abundance and habitat (i.e. canopy versus litter) as predictors. Ant species density is positively associated with temperature and precipitation, and negatively (or non-significantly) associated with two metrics of seasonality, precipitation seasonality and temperature range. Ant species density was significantly higher in canopy samples, but this difference disappeared once abundance was considered. Thus, apparent differences in species density between canopy and litter samples are probably owing to differences in abundance–diversity relationships, and not differences in climate–diversity relationships. Thus, it appears that canopy and litter ant assemblages share a common abundance–diversity relationship influenced by similar but not identical climatic drivers.  相似文献   

3.
We examined the respective roles of climate and vegetation structure on geographical variation in bird species richness. The Province of Buenos Aires (central-eastern Argentina) was divided into 146 squares of 50 km on a side. For each square we evaluated the number of bird species, the value of thirteen climatic variables, and the value of a vegetation strata index. The climatic matrix was analyzed by Principal Component Analysis (PCA), and the first factors resulting from PCA were considered as multifactorial climatic gradients. Simple and Partial Correlation Analysis among bird species richness, vegetation strata, and the first two factors derived from PCA (65% of total variation) indicated that bird richness distribution was determined by the availability of vegetation strata, associated with different vegetation types that, at the same time, were influenced by the climatic conditions summarized in the first climatic factor (a gradient of precipitation, relative humidity, annual termical amplitude, and frost occurrence). This relationships reflect the complexity of factors that can act directly as well as indirectly on the geographical patterns in species richness. Also, we evaluated the importance of study scale comparing our results with previous studies at macrogeographic and local scales, found out that the vegetation structure was the principal determinant of bird species richness at this three geographical scales.  相似文献   

4.
    
Aim The global species richness patterns of birds and mammals are strongly congruent. This could reflect similar evolutionary responses to the Earth’s history, shared responses to current climatic conditions, or both. We compare the geographical and phylogenetic structures of both richness gradients to evaluate these possibilities. Location Global. Methods Gridded bird and mammal distribution databases were used to compare their species richness gradients with the current environment. Phylogenetic trees (resolved to family for birds and to species for mammals) were used to examine underlying phylogenetic structures. Our first prediction is that both groups have responded to the same climatic gradients. Our phylogenetic predictions include: (1) that both groups have similar geographical patterns of mean root distance, a measure of the level of the evolutionary development of faunas, and, more directly, (2) that richness patterns of basal and derived clades will differ, with richness peaking in the tropics for basal clades and in the extra‐tropics for derived clades, and that this difference will hold for both birds and mammals. We also explore whether alternative taxonomic treatments for mammals can generate patterns matching those of birds. Results Both richness gradients are associated with the same current environmental gradients. In contrast, neither of our evolutionary predictions is met: the gradients have different phylogenetic structures, and the richness of birds in the lowland tropics is dominated by many basal species from many basal groups, whereas mammal richness is attributable to many species from both few basal groups and many derived groups. Phylogenetic incongruence is robust to taxonomic delineations for mammals. Main conclusions Contemporary climate can force multiple groups into similar diversity patterns even when evolutionary trajectories differ. Thus, as widely appreciated, our understanding of biodiversity must consider responses to both past and present climates, and our results are consistent with predictions that future climate change will cause major, correlated changes in patterns of diversity across multiple groups irrespective of their evolutionary histories.  相似文献   

5.
Although it has long been held that plant diversity must influence animal diversity, the nature of this relationship remains poorly understood at large spatial scales. We compare the species richness patterns of vascular plants and mammals in north‐eastern Spain using a 100‐km2 grain size to examine patterns of covariation. We found that the total mammal richness pattern, as well as those of herbivores and carnivores considered separately, only weakly corresponded to the pattern of plants. Rather, mammal richness was best described by climatic variables incorporating water inputs, and after adding these variables to multiple regression models, plant and mammal richness were virtually independent. We conclude that the observed association, although weak, is explained by shared responses of both groups to climate, and thus, plant richness has no influence on the richness pattern of Catalan mammals.  相似文献   

6.
植物物种多样性在海拔梯度上的变化规律以及物种多样性与生产力的关系是生态学研究的热点, 至今还没有得出一般性规律。本文以青海省海南藏族自治州贵德县的拉脊山(36°21′ N, 101°27′ E, 海拔3,389-3,876 m)和果洛藏族自治州的玛沁县军牧场山体(34°22′ N, 100°30′ E, 海拔4,121-4,268 m)为研究对象, 对植物高度、盖度、地上生物量和物种多样性随海拔高度的变化进行调查和统计分析, 以探讨青藏高原高寒草甸的物种多样性和地上生物量在海拔梯度上的变化规律及两者的关系。结果表明: (1)两条山体样带上地上生物量与物种多样性随海拔的变化规律一致: 随着海拔的升高, 地上生物量线性降低; Shannon-Wiener指数、Simpson指数和物种丰富度都呈单峰曲线, 在中间海拔最大, 而Pielou指数随海拔的升高线性增加。结合目前针对青藏高原高寒草甸的研究数据, 发现物种丰富度随海拔高度的变化均呈单峰曲线, 说明随着海拔的升高物种多样性先升高后降低可能是青藏高原物种多样性分布的普遍规律。(2)地上生物量与物种多样性的关系在两条山体样带上表现一致: 地上生物量随Shannon- Wiener指数、Simpson指数和Pielou指数的升高而线性降低, 但与物种丰富度不相关。综合两条山体样带所有样方数据, 发现地上生物量与Shannon-Wiener指数、Simpson指数不相关, 而随物种丰富度的升高线性增加。结合目前在青藏高原的相关研究数据, 发现地上生物量与物种丰富度呈S型曲线(logistic model)。  相似文献   

7.
8.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

9.
  总被引:8,自引:2,他引:8  
Broad‐scale variation in taxonomic richness is strongly correlated with climate. Many mechanisms have been hypothesized to explain these patterns; however, testable predictions that would distinguish among them have rarely been derived. Here, we examine several prominent hypotheses for climate–richness relationships, deriving and testing predictions based on their hypothesized mechanisms. The ‘energy–richness hypothesis’ (also called the ‘more individuals hypothesis’) postulates that more productive areas have more individuals and therefore more species. More productive areas do often have more species, but extant data are not consistent with the expected causal relationship from energy to numbers of individuals to numbers of species. We reject the energy–richness hypothesis in its standard form and consider some proposed modifications. The ‘physiological tolerance hypothesis’ postulates that richness varies according to the tolerances of individual species for different sets of climatic conditions. This hypothesis predicts that more combinations of physiological parameters can survive under warm and wet than cold or dry conditions. Data are qualitatively consistent with this prediction, but are inconsistent with the prediction that species should fill climatically suitable areas. Finally, the ‘speciation rate hypothesis’ postulates that speciation rates should vary with climate, due either to faster evolutionary rates or stronger biotic interactions increasing the opportunity for evolutionary diversification in some regions. The biotic interactions mechanism also has the potential to amplify shallower, underlying gradients in richness. Tests of speciation rate hypotheses are few (to date), and their results are mixed.  相似文献   

10.
  总被引:13,自引:1,他引:13  
Aim Spatial autocorrelation in ecological data can inflate Type I errors in statistical analyses. There has also been a recent claim that spatial autocorrelation generates ‘red herrings’, such that virtually all past analyses are flawed. We consider the origins of this phenomenon, the implications of spatial autocorrelation for macro‐scale patterns of species diversity and set out a clarification of the statistical problems generated by its presence. Location To illustrate the issues involved, we analyse the species richness of the birds of western/central Europe, north Africa and the Middle East. Methods Spatial correlograms for richness and five environmental variables were generated using Moran's I coefficients. Multiple regression, using both ordinary least‐squares (OLS) and generalized least squares (GLS) assuming a spatial structure in the residuals, were used to identify the strongest predictors of richness. Autocorrelation analyses of the residuals obtained after stepwise OLS regression were undertaken, and the ranks of variables in the full OLS and GLS models were compared. Results Bird richness is characterized by a quadratic north–south gradient. Spatial correlograms usually had positive autocorrelation up to c. 1600 km. Including the environmental variables successively in the OLS model reduced spatial autocorrelation in the residuals to non‐detectable levels, indicating that the variables explained all spatial structure in the data. In principle, if residuals are not autocorrelated then OLS is a special case of GLS. However, our comparison between OLS and GLS models including all environmental variables revealed that GLS de‐emphasized predictors with strong autocorrelation and long‐distance clinal structures, giving more importance to variables acting at smaller geographical scales. Conclusion Although spatial autocorrelation should always be investigated, it does not necessarily generate bias. Rather, it can be a useful tool to investigate mechanisms operating on richness at different spatial scales. Claims that analyses that do not take into account spatial autocorrelation are flawed are without foundation.  相似文献   

11.
    
Aim  To investigate the relationships between bird species richness derived from the North American Breeding Bird Survey and estimates of the average, minimum, and the seasonal variation in canopy light absorbance (the fraction of absorbed photosynthetically active radiation, fPAR) derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS).
Location  Continental USA.
Methods  We describe and apply a 'dynamic habitat index' (DHI), which incorporates three components based on monthly measures of canopy light absorbance through the year. The three components are the annual sum, the minimum, and the seasonal variation in monthly fPAR, acquired at a spatial resolution of 1 km, over a 6-year period (2000–05). The capacity of these three DHI components to predict bird species richness across 84 defined ecoregions was assessed using regression models.
Results  Total bird species richness showed the highest correlation with the composite DHI [ R 2 = 0.88, P  < 0.001, standard error of estimate (SE) = 8 species], followed by canopy nesters ( R 2 = 0.79, P  < 0.001, SE = 3 species) and grassland species ( R 2 = 0.74, P  < 0.001, SE = 1 species). Overall, the seasonal variation in fPAR, compared with the annual average fPAR, and its spatial variation across the landscape, were the components that accounted for most ( R 2 = 0.55–0.88) of the observed variation in bird species richness.
Main conclusions  The strong relationship between the DHI and observed avian biodiversity suggests that seasonal and interannual variation in remotely sensed fPAR can provide an effective tool for predicting patterns of avian species richness at regional and broader scales, across the conterminous USA.  相似文献   

12.
13.
  总被引:5,自引:0,他引:5  
Aim To investigate the relative contributions of current vs. historical factors in explaining broad‐scale diversity gradients using a combination of contemporary factors and a quantitative estimate of the temporal accessibility of areas for recolonization created by glacial retreat following the most recent Ice Age. Location The part of the Nearctic region of North America that was covered by ice sheets during the glacial maximum 20 000 BP. Methods We used range maps to estimate the species richness of mammals and terrestrial birds in 48 400 km2 cells. Current conditions in each cell were quantified using seven climatic and topographical variables. Historical conditions were estimated using the number of years before present when an area became exposed as the ice sheets retreated during the post‐Pleistocene climate warming. We attempted to tease apart contemporary and historical effects using multiple regression, partial regression and spatial autocorrelation analysis. Results A measure of current energy inputs, potential evapotranspiration, explained 76–82% of the variance in species richness, but time since deglaciation explained an additional 8–13% of the variance, primarily due to effects operating at large spatial scales. Because of spatial covariation between the historical climates influencing the melting of the ice sheet and current climates, it was not possible to partition their effects fully, but of the independent effects that could be identified, current climate explained two to seven times more variance in richness patterns than age. Main Conclusions Factors acting in the present appear to have the strongest influence on the diversity gradient, but an historical signal persisting at least 13 000 years is still detectable. This has implications for modelling changes in diversity patterns in response to future global warming.  相似文献   

14.
  总被引:2,自引:0,他引:2  
Aim Applying water‐energy dynamics and heterogeneity theory to explain species richness via remote sensing could allow for the regional characterization and monitoring of vegetation community assemblages and their environment. We assess the relationship of multi‐temporal normalized difference vegetation index (NDVI) to plant species richness in vegetation communities. Location California, USA. Methods Sub‐regions containing species inventories for chaparral, coastal sage scrub, foothill woodland, and yellow pine forest communities were intersected with a vegetation community map and an AVHRR NDVI time series for 1990, 1991, 1992, 1995 and 1996. Principal components analysis reduced the AVHRR data to three variables representing the sum and temporal trajectories of NDVI within each community. A fourth variable representing heterogeneity was tested using the standard deviation of the first component. Quadratic forms of these variables were also tested. Species richness was analysed by stepwise regression. Results Chaparral, coastal sage scrub, and yellow pine forest had the best relationships between species richness and NDVI. Richness of chaparral was related to NDVI heterogeneity and spring greenness (r2 varied between 0.26 and 0.62 depending on year of NDVI data). Richness of coastal sage scrub was nonlinearly related to annual NDVI and heterogeneity (r2 0.63–0.81), with peak richness at intermediate values. Foothill woodland richness was related to heterogeneity in a monotonic curvilinear fashion (r2 0.28–0.35). Yellow pine forest richness was negatively related to spring greenness and positively related to heterogeneity (r2 0.40–0.46). Main Conclusions While NDVI's relationship to species richness varied, the selection of NDVI variables was generally consistent across years and indicated that spatial variability in NDVI may reflect important patterns in water‐energy use that affect plant species richness. The principal component axis that should correspond closely with annual mean NPP showed a less prominent role. We conclude that plant species richness for coarse vegetation associations can be characterized and monitored at a regional scale and over long periods of time using relatively coarse resolution NDVI data.  相似文献   

15.
    
Understanding how plant communities respond to plant invasions is important both for understanding community structure and for predicting future ecosystem change. In a system undergoing intense plant invasion for 25 years, we investigated patterns of community change at a regional scale. Specifically, we sought to quantify how tussock grassland plant community structure had changed and whether changes were related to increases in plant invasion. Frequency data for all vascular plants were recorded on 124, permanent transects in tussock grasslands across the lower eastern South Island of New Zealand measured three times over a period of 25 years. Multivariate analyses of species richness were used to describe spatial and temporal patterns in the vegetation. Linear mixed‐effects models were used to relate temporal changes in community structure to the level and rate of invasion of three dominant invasive species in the genus Hieracium while accounting for relationships with other biotic and abiotic variables. There was a strong compositional gradient from exotic‐ to native‐dominated plant communities that correlated with increasing elevation. Over the 25 years, small‐scale species richness significantly decreased and then increased again; however, these changes differed in different plant communities. Exotic species frequency consistently increased on some transects and consistently declined on others. Species richness changes were correlated with the level of Hieracium invasion and abiotic factors, although the relationship with Hieracium changed from negative to positive over time. Compositional changes were not related to measured predictors. Our results suggest that observed broad‐scale fluctuations in species richness and community composition dynamics were not driven by Hieracium invasion. Given the relatively minor changes in community composition over time, we conclude that there is no evidence for widespread degradation of these grasslands over the last 25 years. However, because of continuing weed invasion, particularly at lower elevations, impacts may emerge in the longer term.  相似文献   

16.
17.
18.
19.
1990年8月对梵净山和张家界两个自然保护区内蜘蛛群落进行调查,结果表明:自然保护区内蜘蛛资源极为丰富,经初步鉴定,计有蜘蛛27科85属180种,其中主要成分依次为肖蛸、园蛛、狼蛛、球蛛和皿蛛等。蜘蛛发生量折合每亩为17,585—54,000头。八个不同生境类型蜘蛛群落的种类数和密度存在明显差异;各种蜘蛛分布群在群落内的比例随栖息地结构变化而改变,因而也导致蜘蛛群落的Shannon-Wiener多样性指数,Simpson优势度和均等度等参数的变化。  相似文献   

20.
高寒草甸不同草地群落物种多样性与生产力关系研究   总被引:30,自引:3,他引:30  
生态系统的结构和功能、生物多样性与生产力的关系问题是近年来群落生态学中研究的中心问题,其中,生态系统生产力水平是其功能的重要表现形式,用4种不同草地类型探讨自然群落的物种多样性与生产力关系.结果表明,矮嵩草草甸、小嵩草草甸和金露梅灌丛群落中物种多样性与生产力的关系呈线性增加关系,藏嵩草沼泽化草甸群落中线性增加关系不显著,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响.不同的环境资源和环境异质性是形成群落结构特征、物种多样性分布格局差异的主要原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号