首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a sensitive radioimmunoassay, the tripeptide Tyr-Gly-Gly (YGG) which corresponds to the N-terminal sequence of opioid peptides was detected in rat brain and identified by HPLC. Its regional distribution paralleled that of (Met5)enkephalin (YGGFM), a marker of enkephalin neurons. Ablation of these neurons in the striato-pallidal pathway by intrastriatal kainate, induced a significant decrease in YGG levels in caudateputamen and globus pallidus (-49%), consistent with the hypothesis that YGG originates from enkephalin neurons. When pallidal slices were incubated under various conditions, YGG was mainly found in the incubation medium indicating a predominantly extracellular localization. Depolarization of these slices by a K+-stimulus elicited a release of YGGFM accompanied by a marked increase in YGG levels. Bestatin and amastatin further enhanced YGG levels, reflecting the participation of aminopeptidases in the metabolism of the tripeptide and its precursor. Captopril, an inhibitor of the angiotensin-converting enzyme (ACE) showed no effect on the recovery of YGGFM and YGG. In contrast, the formation of YGG was completely prevented by Thiorphan (IC50 value = 9 nM) and phosphoramidon, two inhibitors of "enkephalinase" (EC 3.4.24.11; membrane metallo-endopeptidase), thus identifying the latter as the YGG-forming enzyme. The K+-induced increase in YGG + YGGFM levels in medium containing bestatin exceeded by about 60% the amount of YGGFM released from tissues, suggesting that YGG was mainly formed by extracellular hydrolysis of the various opioid fragments of the proenkephalin molecule. In vivo, YGG levels of cerebral regions were also markedly reduced in rats treated with acetorphan, a parenterally active "enkephalinase" inhibitor. All data suggest that YGG levels constitute an index of opioid peptide release.  相似文献   

2.
A dipeptidyl carboxypeptidase activity has been localized in synaptic plasma membranes which have been prepared from isolated rat brain cortical synaptosomes. The specificity of this proteolytic activity towards various synthetic and biological active peptides is compared to the peptidase activities of intact synaptosomes. In contrast to the synaptosomal peptidases which are capable of cleaving all peptide bonds of Met-enkephalin-Arg6-Phe7 the peptidase activity associated with the synaptic plasma membrane exclusively hydrolyses a dipeptide from the carboxyl terminus of all hepta- and hexapeptides tested. The fact that this dipeptidyl carboxypeptidase does not cleave the Gly3-Phe4 peptide bond of Met-enkephalin suggests that this enzyme is different from "enkephalinase". The synaptic membrane dipeptidyl carboxypeptidase is inhibited by metal chelating agents and thiols but is not affected by compounds known to inhibit serine proteases, thermolysin and "enkephalinase".  相似文献   

3.
The effects of dopamine receptor stimulation on enkephalin release were evaluated in vitro and in vivo by measuring the changes in the levels of [Met5]enkephalin (YGGFM) and Tyr-Gly-Gly (YGG), a characteristic extracellular enkephalin metabolite produced under the action of enkephalinase. In rat striatal slices, D1-receptor agonists or antagonists did not modify enkephalin release. By contrast, D2-receptor agonists enhanced the potassium-induced release of YGGFM and YGG without affecting spontaneous release from nondepolarized slices. This response was prevented by the D2-receptor antagonists haloperidol and RIV 2093, the latter compound being more potent, which suggested the involvement of a putative D2-receptor subtype. Acute administration of apomorphine or selective D2-receptor agonists, but not that of a D1-receptor agonist, enhanced the steady-state level of YGG without affecting the YGGFM level in rat striatum. The effect was blocked selectively by D2-receptor antagonists which, administered alone, had no effect. These observations indicate that D2-receptor stimulation in vitro or in vivo facilitates enkephalin release from striatal neurons, but that endogenous dopamine does not exert any tonic influence upon the opioid peptide neuron activity under basal conditions. However, chronic administration of haloperidol resulted in increases in striatal YGGFM and YGG, an effect presumably reflecting a long-term adaptive process.  相似文献   

4.
Locust adipokinetic hormone (AKH, pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) was used as the substrate to measure neuropeptide-degrading endopeptidase activity in neutral membranes from ganglia of the locust Schistocerca gregaria. Initial hydrolysis of AKH at neural pH by peptidases of washed neural membranes generated pGlu-Leu-Asn and Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2 as primary metabolites, demonstrating that degradation was initiated by cleavage of the Asn-Phe bond. Amastatin protected the C-terminal fragment from further metabolism by aminopeptidase activity without inhibiting AKH degradation. The same fragments were generated on incubation of AKH with purified pig kidney endopeptidase 24.11, and enzyme known to cleave peptide bonds that involve the amino group of hydrophobic amino acids. Phosphoramidon (10 microM), a selective inhibitor of mammalian endopeptidase 24.11, partially inhibited the endopeptidase activity of locust neural membranes. This phosphoramidon-sensitive activity was shown to enriched in a synaptic membrane preparation with around 80% of the activity being inhibited by 10 microM-phosphoramidon (IC50 = 0.2 microM). The synaptic endopeptidase was also inhibited by 1 mM-EDTA, 1 mM-1,10-phenanthroline and 1 microM-thiorphan, and the activity was maximal between pH 7.3 and 8.0. Localization of the phosphoramidon-sensitive enzyme in synaptic membranes is consistent with a physiological role for this endopeptidase in the metabolism of insect peptides at the synapse.  相似文献   

5.
The tripeptide Tyr-Gly-Gly (YGG), representing the product of enkephalin hydrolysis by enkephalinase (EC 3.4.24.11), was characterized and its levels measured in spinal cord perfusates of halothane-anaesthetized rats. During noxious pinching of the muzzle, which is known to trigger enkephalin release, YGG levels were enhanced more markedly and for longer than were those of [Met5]enkephalin (YGGFM), in the same samples. By contrast, neither YGG nor YGGFM levels were affected by pinching the tail. Treatment with carbaphethiol, a parenterally-active aminopeptidase inhibitor, markedly increased YGG levels and lengthened the duration of the increase produced by pinching the muzzle. Treatment with acetorphan, a parenterally-active enkephalinase inhibitor, given alone or in combination with carbaphethiol, completely prevented the rise in YGG triggered by noxious stimulation. By contrast, [Met5]enkephalin levels in the perfusates were increased by the combined administration of the two peptidase inhibitors but these levels were not further enhanced by noxious stimulation. Thus, spinal cord YGG appears to be formed under the influence of enkephalinase and to constitute a sensitive index of enkephalin release.  相似文献   

6.
The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.  相似文献   

7.
The exposure of the carboxyl-terminal of the Band 3 protein of human erythrocyte membranes in intact cells and membrane preparations to proteolytic digestion was determined. Carboxypeptidase Y digestion of purified Band 3 in the presence of non-ionic detergent released amino acids from the carboxyl-terminal of Band 3. The release of amino acids was very pH dependent, digestion being most extensive at pH 3, with limited digestion at pH 6 or above. The 55,000 dalton carboxyl-terminal fragment of Band 3, generated by mild trypsin digestion of ghost membranes, had the same carboxyl-terminal sequence as intact Band 3, based on carboxypeptidase Y digestion. Treatment of intact cells with trypsin or carboxypeptidase Y did not release any amino acids from the carboxyl-terminal of Band 3. In contrast, carboxypeptidase Y readily digested the carboxyl-terminal of Band 3 in ghosts that were stripped of extrinsic membrane proteins by alkali or high salt. This was shown by a decrease in the molecular weight of a carboxyl-terminal fragment of Band 3 after carboxypeptidase Y digestion of stripped ghost membranes. No such decrease was observed after carboxypeptidase Y treatment of intact cells. In addition, Band 3 purified from carboxypeptidase Y-treated stripped ghost membranes had a different carboxyl-terminal sequence from intact Band 3. Cleavage of the carboxyl-terminal of Band 3 was also observed when non-stripped ghosts or inside-out vesicles were treated with carboxypeptidase Y. However, the digestion was less extensive. These results suggest that the carboxyl-terminal of Band 3 may be protected from digestion by its association with extrinsic membrane proteins. We conclude, therefore, that the carboxyl-terminal of Band 3 is located on the cytoplasmic side of the red cell membrane. Since the amino-terminal of Band 3 is also located on the cytoplasmic side of the erythrocyte membrane, the Band 3 polypeptide crosses the membrane an even number of times. A model for the folding of Band 3 in the erythrocyte membrane is presented.  相似文献   

8.
Degradation products of the N-terminal tetrapeptide of dermorphin, H-Tyr-D-Ala-Phe-Gly-OH (ALPG) and D-Arg2-substituted tetrapeptide analogs of dermorphin, H-Tyr-D-Arg-Phe-Gly-OH (ARPG), H-Tyr-D-Arg-Phe-Gly-NH2 (TDAPG-NH2) and H-Tyr-D-Arg-Phe-beta-Ala-OH (TDAPA) by enkephalin degrading enzymes were studied by using reversed-phase high-performance liquid chromatography. After 5 and 25 hr incubations of the peptides with solubilized enzymes of mouse brain or spinal cord, liberation of the appreciable Tyr1 residue was observed in ALPG but not in ARPG, TDAPG-NH2 and TDAPA. When ARPG and TDAPG-NH2 were incubated with enzymes for 25 hr, a main degradation product was the N-terminal tripeptide produced from the hydrolysis of Phe3-Gly4 bond. Conversely, TDAPA did not produce the N-terminal tripeptide after 25 hr incubation with enzymes. In the enzyme assay, Tyr1-D-Arg2 bond of ARPG, TDAPG-NH2 and TDAPA was more stable than that of ALPG to the cleavage by aminopeptidase M (AP-M). Phe3-Gly4 bond of ALPG, ARPG and TDAPG-NH2 were easily hydrolyzed by carboxypeptidase Y (CP-Y) within 3 hr incubation, whereas the hydrolysis of Phe3-beta-Ala4 bond of TDAPA by CP-Y was not observed after 3 hr incubation. The present results and previous behavioural data suggest that a potent and prolonged antinociceptive activity of the D-Arg-substituted tetrapeptides is mainly attributed to the stability of Tyr1-D-Arg2 bond against aminopeptidase of peptidases.  相似文献   

9.
Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.  相似文献   

10.
Cholecystokinin octapeptide (CCK26-33) is metabolized by neural membranes with an initial cleavage to CCK29-33 and subsequent breakdown to CCK31-33 and CCK32-33; this pattern of proteolysis occurs on incubation with either P2 or purified lysed synaptosomal membranes. To determine whether the pattern of CCK26-33 proteolysis is unique to the brain and whether regional brain differences in its pathway or rate exist, we analyzed the proteolysis of CCK by synaptic membranes of various brain areas and cellular membranes of peripheral tissue. The pattern of degradation in brain did not differ among the regions studied. The overall proteolysis rate, as measured by the formation of tryptophan, was higher in the striatum than in the cortex, although CCK29-33 was formed at the same rate in both areas. In nonneural tissue, the rate of degradation was highest in liver membranes and lowest in pancreatic acinar cell preparations. Thus, it appears that degradative peptidases are not necessarily colocalized with CCK receptors. The pattern of product formation is the same in peripheral compared with CNS membranes; thus, the degradative pathway does not appear to be unique to brain tissue. The enzyme present in synaptic membranes that is responsible for CCK29-33 formation requires a metal ion and sulfydryl groups for the catalysis and thus is a metalloendopeptidase. Furthermore, its activity is inhibited by Ac-Gly-Phe-Nle-al, a peptide aldehyde whose sequence bears some homology to the amino acid sequence in the region of CCK26-33 that is cleaved by this enzyme.  相似文献   

11.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

12.
We report here on the binding affinity and bioassay results of cyclic enkephalin analogs comprising a cyclic moiety and C-terminal fragment of MERGL, where ME denotes methionine enkephalin. MERGL (YGGFMRGL) has been suggested to be cleaved enzymatically by membrane-bound enkephalinase 24.11 to leave ME and the tripeptide RGL. In our study we have synthesized hybrids of DPDPE or DPLCE and the C-terminal tripeptide RGL in order to mimic a prohormone able to cross the blood-brain barrier. The study has shown that of the homologs presented here, analogs of DPLCE often are more potent at delta opioid receptors both in binding affinity and in bioactivity at the MVD, than DPDPE. Our hypothesis that hybrids (consisting of the drug and the spacer for the carrier) could be designed which would either have no opioid activity or, alternatively, be by themselves very active, has been verified.  相似文献   

13.
内吗啡肽-2的人工合成及其酶促降解   总被引:3,自引:0,他引:3  
内吗啡肽-2(endomorphin-2)是Zadina等人[1]于1997年发现的一种具有镇痛作用的四肽,它存在于动物和人的中枢神经系统内[2].它是内源性μ阿片受体的激动剂,具有高亲合性(K1=690pmol,L)和选择性(δ/μ=13400、K/μ=7600).  相似文献   

14.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB.  相似文献   

15.
Tachykinin-related peptides (TRP) are widely distributed in the CNS of insects, where they are likely to function as transmitters/modulators. Metabolic inactivation by membrane ecto-peptidases is one mechanism by which peptide signalling is terminated in the CNS. Using locustatachykinin-1 (LomTK-1, GPSGFYGVRamide) as a substrate and several selective peptidase inhibitors, we have compared the types of membrane associated peptidases present in the CNS of four insects, Locusta migratoria, Leucophaea maderae, Drosophila melanogaster and Lacanobia oleracea. A neprilysin (NEP)-like activity cleaving the G-F peptide bond was the major LomTK-1-degrading peptidase detected in locust brain membranes. NEP activity was also found in Leucophaea brain membranes, but the major peptidase was an angiotensin converting enzyme (ACE), cleaving the G-V peptide bond. Drosophila adult head and larval neuronal membranes cleaved the G-F and G-V peptide bonds. Phosphoramidon inhibited both these cleavages, but with markedly different potencies, indicating the presence in the fly brain of two NEP-like enzymes with different substrate and inhibitor specificity. In Drosophila, membrane ACE did not make a significant contribution to the cleavage of the G-V bond. In contrast, ACE was an important membrane peptidase in Lacanobia brain, whereas very little neuronal NEP could be detected. A dipeptidyl peptidase IV (DPP IV) that removed the GP dipeptide from the N-terminus of LomTK-1 was also found in Lacanobia neuronal membranes. This peptidase was a minor contributor to LomTK-1 metabolism by neuronal membranes from all four insect species. In Lacanobia, LomTK-1 was also a substrate for a deamidase that converted LomTK-1 to the free acid form. However, the deamidase was not an integral membrane protein and could be a lysosomal contaminant. It appears that insects from different orders can have different complements of neuropeptide-degrading enzymes. NEP, ACE and the deamidase are likely to be more efficient than the common DPP IV activity at terminating neuropeptide signalling since they cleave close to the C-terminus of the tachykinin, a region essential for maintaining biological activity.  相似文献   

16.
A dipeptidyl carboxypeptidase distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane preparations of rabbit brain. The enzyme cleaved enkephalin at the Gly-Phe bond, releasing either Phe-Leu from Leu-enkephalin or Phe-Met from Met-enkephalin, and also acted on bradykinin, releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this dipeptidyl carboxypeptidase did not act on angiotensin-1, and it did not degrade hippuryl-His-Leu. Chloride ions did not affect its activity, but the enzyme was inhibited by metal chelating agents. The enzyme was not inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for this enzyme of 0.14 mM with Leu-enkephalin and 0.12 mM with bradykinin as substrates. Present data indicate that more than one enzyme is present in brain membrane fractions acting as dipeptidyl carboxypeptidases inactivating enkephalin; these data suggest multiple roles for such enzymes in the regulation of peptide metabolism.  相似文献   

17.
As the C-terminal octapeptide of cholecystokinin represents a putative neurotransmitter in the central nervous system, the membrane-bound enzymes involved in its inactivation were investigated. Two aminopeptidases, involved in the cleavage of enkephalins, and a metalloendopeptidase were identified in extracts of solubilized synaptic membranes. The metalloendopeptidase, which cleaves CCK-8 at the Trp30-Met31 bond, appeared to be indistinguishable from 'enkephalinase A1' on the basis of its chromatographic behaviour, sensitivity to inhibitors and relative affinities for Met- and Leu-enkephalins. This finding indicates that CCK-8 is inactivated in vitro by the same peptidases as enkephalins.  相似文献   

18.
The Ca(2+)-dependent phospholipid-binding protein annexin II heterotetramer (AIIt) is composed of two copies of annexin II and a p11 dimer. The interaction of the carboxyl-terminal lysine residues of the p11 subunit of AIIt with the lysine-binding kringle domains of plasminogen is believed to play a key role in plasminogen binding and stimulation of the tPA-catalyzed cleavage of plasminogen to plasmin. In the current report, we show that AIIt-stimulated plasminogen activation is regulated by basic carboxypeptidases, in vitro. The incubation of AIIt with a 1/400 molar ratio of carboxypeptidase B for periods as short as 2 min resulted in a significant loss in AIIt-stimulated plasminogen activation. Carboxypeptidase B (CpB) as well as thrombin-activated fibrinolysis inhibitor (TAFIa) and carboxypeptidase N (CpN) rapidly reduced AIIt-stimulated plasminogen activation by 80%. The molar ratio of carboxypeptidase/AIIt for half-maximal inhibition of AIIt was 1/4700, 1/700, and 1/500 for CpB, TAFIa, and CpN, respectively. Treatment of AIIt with carboxypeptidase resulted in loss of both carboxyl-terminal lysine residues from the p11 subunit, which correlated with a decrease in the k(cat) and an increase in the K(m) for plasminogen activation. The data reveal a novel mechanism for the regulation of AIIt-stimulated plasminogen activation.  相似文献   

19.
Polyclonal antibodies were raised in rabbits against a synthetic peptide which corresponds to the 12-amino acid carboxyl-terminal sequence of murine erythrocyte Band 3. Immunoblots of ghost membrane proteins showed that the antibody specifically recognized murine or rat Band 3 but not human or canine Band 3. The antibody also bound to murine ghost membranes applied directly to nitrocellulose but not to human ghost membranes. This shows that the carboxyl terminus of Band 3 is available for antibody binding in ghost membranes and that the carboxyl-terminal sequences of human and mouse Band 3 are not identical. The specificity of the antibody for the carboxyl terminus of Band 3 was confirmed by the loss of antibody binding after digestion of detergent-solubilized ghost membrane proteins with carboxypeptidase Y. In addition, carboxyl-terminal fragments of Band 3 generated by protease treatment of cells or ghost membranes were positive on immunoblots while amino-terminal fragments were negative. In contrast, protease-treated stripped ghost membranes did not contain a carboxyl-terminal fragment of Band 3 that was detectable on immunoblots. The carboxyl terminus of Band 3 was localized to the cytoplasmic side of the erythrocyte membrane since antibody binding as determined by immunofluorescence occurred in ghosts and permeabilized cells but not in intact cells. In addition, competition studies using enzyme-linked immunosorbent assays and immunoblots showed that cells and resealed ghosts competed poorly for antibody compared to ghost membranes, inside-out vesicles, or albumin-conjugated peptide.  相似文献   

20.
The hydrolysis of the porcine 26-residue brain natriuretic peptide (BNP-26) and its counterpart human 28-residue atrial natriuretic peptide (alpha-hANP) by pig membrane preparations and purified membrane peptidases was studied. When the two peptides were incubated with choroid plexus membranes, the products being analysed by h.p.l.c., alpha-hANP was degraded twice as fast as BNP. The h.p.l.c. profiles of alpha-hANP hydrolysis, in short incubations with choroid plexus membranes, yielded alpha hANP' as the main product, this having been previously shown to be the result of hydrolysis at the Cys7-Phe8 bond. In short incubations this cleavage was inhibited 84% by 1 microM-phosphoramidon, a specific inhibitor of endopeptidase-24.11. BNP-26 was hydrolysed by choroid plexus membranes, kidney microvillar membranes and purified endopeptidase-24.11 in a manner that yielded identical h.p.l.c. profiles. In the presence of phosphoramidon, hydrolysis by the choroid plexus membranes was 94% inhibited. Captopril had no effect and, indeed, no hydrolysis of BNP-26 by peptidyl dipeptidase A (angiotensin-converting enzyme) was observed even after prolonged incubation with the purified enzyme. The stepwise hydrolysis of BNP-26 by endopeptidase-24.11 was investigated by sequencing the peptides produced during incubation. The initial product resulted from hydrolysis at Ser14-Leu15, thereby opening the ring. This product (BNP') was short-lived; further degradation involved hydrolysis at Ile12-Gly13, Arg8-Leu9, Gly17-Leu18, Val22-Leu23, Arg11-Ile12 and Cys4-Phe5. Thus endopeptidase-24.11 is the principal enzyme in renal microvillar and choroid plexus membranes hydrolysing BNP-26 and alpha-hANP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号