首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the direct actions of atrial natriuretic factor (ANF) on the pulmonary vascular bed and to compare these actions with those of sodium nitroprusside (SNP). The responses to incremental infusion rates of 1, 5, 10, and 50 ng.kg-1.min-1 synthetic human ANF and to 1-2 micrograms.kg-1.min-1 SNP were examined in the in situ autoperfused lung lobe of open-chest anesthetized pigs under conditions of normal and elevated pulmonary vascular tone. During basal conditions, ANF and SNP caused small but significant reductions in pulmonary artery pressure (Ppa) and pulmonary venous pressure (Ppv) with no change in lobar vascular resistance (LVR). When pulmonary vascular tone was increased by prostaglandin F2 alpha (20 micrograms/min), ANF infusion at doses greater than 1 ng.kg-1.min-1 decreased Ppa and LVR in a dose-related fashion. Infusion of 50 ng.kg-1.min-1 ANF and of 2 micrograms.kg-1.min-1 SNP maximally decreased Ppa, from 33 +/- 3 to 20 +/- 2 mmHg (P less than 0.001) and from 31 +/- 4 to 18 +/- 1 mmHg (P less than 0.001), respectively. At these doses, ANF reduced systemic arterial pressure by only 11.5 +/- 3% compared with 34 +/- 4% decreased with SNP (P less than 0.001). The results indicate that ANF, similarly to SNP, exerts a direct potent vasodilator activity in the porcine pulmonary vascular bed, which is dependent on the existing level of vasoconstrictor tone.  相似文献   

2.
The effects of positive end-expiratory pressure (PEEP) on the pulmonary circulation were studied in 14 intact anesthetized dogs with oleic acid (OA) lung injury. Transmural (tm) mean pulmonary arterial pressure (Ppa)/cardiac index (Q) plots with transmural left atrial pressure (Pla) kept constant were constructed in seven dogs, and Ppa(tm)/PEEP plots with Q and Pla(tm) kept constant were constructed in seven other dogs. Q was manipulated by using a femoral arteriovenous bypass and a balloon catheter inserted in the inferior vena cava. Pla was manipulated using a balloon catheter placed by thoracotomy in the left atrium. Ppa(tm)/Q plots were essentially linear. Before OA, the linearly extrapolated pressure intercept of the Ppa(tm)/Q relationship approximated Pla(tm). OA (0.09 ml/kg into the right atrium) produced a parallel shift of the Ppa(tm)/Q relationship to higher pressures; i.e., the extrapolated pressure intercept increased while the slope was not modified. After OA, 4 Torr PEEP (5.4 cmH2O) had no effect on the Ppa(tm)/Q relationship and 10 Torr PEEP (13.6 cmH2O) produced a slight, not significant, upward shift of this relationship. Changing PEEP from 0 to 12 Torr (16.3 cmH2O) at constant Q before OA led to an almost linear increase of Ppa(tm) from 14 +/- 1 to 19 +/- 1 mmHg. After OA, Ppa(tm) increased at 0 Torr PEEP but changing PEEP from 0 to 12 Torr did not significantly affect Ppa(tm), which increased from 19 +/- 1 to 20 +/- 1 mmHg. These data suggest that moderate levels of PEEP minimally aggravate the pulmonary hypertension secondary to OA lung injury.  相似文献   

3.
We tested the hypothesis that cocaine-induced impairment of left ventricular function results in cardiogenic pulmonary edema. Mongrel dogs, anesthetized with alpha-chloralose, were injected with two doses of cocaine (5 mg/kg iv) 27 min apart. Cocaine produced transient decreases in aortic and left ventricular systolic pressures that were followed by increases exceeding control. As aortic pressure recovered, left ventricular end-diastolic, left atrial (Pla), pulmonary arterial (Ppa), and central venous pressures rose. Cardiac output and stroke volume were reduced when measured 4-5 min after cocaine administration. Peak Ppa and Pla were 31 +/- 5 (SE) mmHg (range 17-51 mmHg) and 26 +/- 5 mmHg (range 12-47 mmHg), respectively. Increases in extravascular lung water content (4.10 to 6.24 g H2O/g dry lung wt) developed in four animals in which Pla exceeded 30 mmHg. Analysis of left ventricular function curves revealed that cocaine depressed the inotropic state of the left ventricle. Cocaine-induced changes in hemodynamics spontaneously recovered and could be elicited again by the second dose of the drug. Our results show that cocaine-induced pulmonary hypertension, associated with decreased left ventricular function, produces pulmonary edema if pulmonary vascular pressures rise sufficiently.  相似文献   

4.
Distribution of pulmonary vascular resistance in experimental fibrosis   总被引:3,自引:0,他引:3  
To elucidate mechanisms of pulmonary hypertension in interstitial fibrosis, we compared the left lower lobes (LLL) of six dogs in which fibrosis was induced by radiation and bleomycin with the normal right lower lobes (RLL) for 1) slope and intercept of the vascular pressure-flow (P-Q) curves, 2) segmental resistances with arterial and venous occlusion under base-line conditions, after serotonin and vasodilators, and 3) light-microscopic morphology and morphometry. We found that 1) the total volume and vascular compliance of the fibrotic LLL were five and four times less, respectively, than controls, 2) the slope and intercept of the P-Q curves in the LLL were 154.0 +/- 65.8 (SE) mmHg.l-1.min-1 and 8.2 +/- 1.5 mmHg, respectively, compared with 18.3 +/- 2.3 and 3.2 +/- 0.9 for the RLL, 3) the resistance of the arterial, middle, and venous segments in the LLL were higher than in the RLL, but middle segment resistance rose disproportionately, and 4) constriction of the arterial segment with serotonin was similar in LLL and RLL, and vasodilators were ineffective. Histologically, fibrosis involved 36% of the lung, and the capillary bed was severely obliterated. Arteries showed an increased percentage of medial and intimal thickening and peripheral muscularization; venous abnormalities were less marked. We conclude that pulmonary fibrosis increases vascular resistance mainly in the middle segment, largely by loss of tissue and obliteration of the microvasculature.  相似文献   

5.
Sildenafil has been shown to be an effective treatment of pulmonary arterial hypertension and is believed to present with pulmonary selectivity. This study was designed to determine the site of action of sildenafil compared with inhaled nitric oxide (NO) and intravenous sodium nitroprusside (SNP), known as selective and nonselective pulmonary vasodilators, respectively. Inhaled NO (40 ppm), and maximum tolerated doses of intravenous SNP and sildenafil, (5 microg x kg(-1) x min(-1) and 0.1 mg x kg(-1) x h(-1)), respectively, were administered to eight dogs ventilated in hypoxia. Pulmonary vascular resistance (PVR) was evaluated by pulmonary arterial pressure (Ppa) minus left atrial pressure (Pla) vs. flow curves, and partitioned into arterial and venous segments by the occlusion method. Right ventricular hydraulic load was defined by pulmonary arterial characteristic impedance (Zc) and elastance (Ea) calculations. Right ventricular arterial coupling was estimated by the ratio of end-systolic elastance (Ees) to Ea. Decreasing the inspired oxygen fraction from 0.4 to 0.1 increased Ppa - Pla at a standardized flow of 3 l x min(-1) x m(-2) from 6 +/- 1 to 18 +/- 1 mmHg (mean +/- SE). Ppa - Pla was decreased to 9 +/- 1 by inhaled NO, 14 +/- 1 by SNP, and 14 +/- 1 mmHg by sildenafil. The partition of PVR, Zc, Ea, and Ees/Ea was not affected by the three interventions. Inhaled NO did not affect systemic arterial pressure, which was similarly decreased by sildenafil and SNP, from 115 +/- 4 to 101 +/- 4 and 98 +/- 5 mmHg, respectively. We conclude that inhaled NO inhibits hypoxic pulmonary vasoconstriction more effectively than sildenafil or SNP, and sildenafil shows no more selectivity for the pulmonary circulation than SNP.  相似文献   

6.
Thromboxane (Tx) has been suggested to mediate the pulmonary hypertension of phorbol myristate acetate- (PMA) induced acute lung injury. To test this hypothesis, the relationship between Tx and pulmonary arterial pressure was evaluated in a model of acute lung injury induced with PMA in pentobarbital sodium-anesthetized male mongrel dogs. Sixty minutes after administration of PMA (20 micrograms/kg iv, n = 10), TxB2 increased 10-fold from control in both systemic and pulmonary arterial blood and 8-fold in bronchoalveolar lavage (BAL) fluid. Concomitantly, pulmonary arterial pressure (Ppa) increased from 14.5 +/- 1.0 to 36.2 +/- 3.5 mmHg, and pulmonary vascular resistance (PVR) increased from 5.1 +/- 0.4 to 25.9 +/- 2.9 mmHg.l-1.min. Inhibition of Tx synthase with OKY-046 (10 mg/kg iv, n = 6) prevented the PMA-induced increase in Tx concentrations in blood and BAL fluid but did not prevent or attenuate the increase in Ppa. OKY-046 pretreatment did, however, attenuate but not prevent the increase in PVR 60 min after PMA administration. Pretreatment with the TxA2/prostaglandin H2 receptor antagonist ONO-3708 (10 micrograms.kg-1.min-1 iv, n = 7) prevented the pressor response to bolus injections of 1-10 micrograms U-46619, a Tx receptor agonist, but did not prevent or attenuate the PMA-induced increase in Ppa. ONO-3708 also attenuated but did not prevent the increase in PVR. These results suggest that Tx does not mediate the PMA-induced pulmonary hypertension but may augment the increases in PVR in this model of acute lung injury.  相似文献   

7.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.  相似文献   

9.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

10.
We investigated the effect of IL-2 in the isolated guinea pig lung perfused with phosphate-buffered Ringer's solution (containing 0.5 g/100 ml albumin and 5.5 mM dextrose) to determine the mechanism of IL-2-induced pulmonary edema. IL-2 (0 to 10,000 U/ml) was added to the perfusate following a 10 min baseline steady-state period. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight (as a measure of developing pulmonary edema) were recorded at 0, 10, 30, 40, and 60 min. The capillary filtration coefficient (Kf.c), an index of vascular permeability to water, was measured at 30 and 60 min. Infusion of IL-2 increased Ppc (from 3.9 +/- 0.1 cm H2O at baseline to 8.8 +/- 1.1 cm H2O at 60 min for IL-2 at 2000 U/ml, p less than 0.01; and from 3.8 +/- 0.1 cm H2O at baseline to 8.9 +/- 0.6 cm H2O at 60 min for IL-2 at 10,000 U/ml, p less than 0.01. The lung weight also increased (32% at IL-2 concentration of 2000 U/ml, and 26% at IL-2 concentration of 10,000 U/ml) The capillary filtration coefficient did not change with IL-2 infusion. The IL-2 response was prevented using the pulmonary vasodilator, papaverine. The infusion of IL-2 was associated with the generation of thromboxane A2(TxA2) in the effluent perfusate. Inhibition of TxA2 synthetase using Dazoxiben prevented the pulmonary vasoconstriction and edema response to IL-2. In addition, IL-2 had no effect on the transendothelial clearance of 125I-albumin. The results indicate that IL-2 causes pulmonary edema secondary to an increase in Ppc. The response is mediated by IL-2 stimulation of TxA2 generation from the lung.  相似文献   

11.
Inhaled nitric oxide gas (NO) has recently been shown to reverse experimentally induced pulmonary vasoconstriction. To examine the effect of free radical injury and methylene blue exposure on inhaled NO-induced pulmonary vasodilation we studied ventilated rabbit lungs perfused with Krebs solution containing 3% dextran and indomethacin. When NO gas (120 ppm) was added to the inhaled mixture for 3 min, the elevated pulmonary arterial perfusion pressure (Ppa) induced by the thromboxane analogue U-46619 was significantly reduced [8 +/- 2 (SE) mmHg]. Acetylcholine similarly reduced Ppa (9 +/- 1 mmHg). After free radical injury and methylene blue exposure, inhaled NO again produced significant vasodilation (5 +/- 1 and 9 +/- 2 mmHg, respectively), but acetylcholine resulted in an increase in Ppa (-9 +/- 3 and -4 +/- 1 mmHg, respectively). These data demonstrate that pulmonary vasodilation produced by inhaled NO is unaffected by free radical injury or methylene blue in the intact lung despite concomitant reversal of acetylcholine-induced vasodilation.  相似文献   

12.
The effects of an increase in alveolar pressure on hypoxic pulmonary vasoconstriction (HPV) have been reported variably. We therefore studied the effects of positive end-expiratory pressure (PEEP) on pulmonary hemodynamics in 13 pentobarbital-anesthetized dogs ventilated alternately in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). In this intact animal model, HPV was defined as the gradient between hypoxic and hyperoxic transmural (tm) mean pulmonary arterial pressure [Ppa(tm)] at any level of cardiac index (Q). Ppa(tm)/Q plots were constructed with mean transmural left atrial pressure [Pla(tm)] kept constant at approximately 6 mmHg (n = 5 dogs), and Ppa(tm)/PEEP plots were constructed with Q kept constant approximately 2.8 l.min-1.m-2 and Pla(tm) kept constant approximately 8 mmHg (n = 8 dogs). Q was manipulated using a femoral arteriovenous bypass and a balloon catheter in the inferior vena cava. Pla(tm) was held constant by a balloon catheter placed by left thoracotomy in the left atrium. Increasing PEEP, from 0 to 12 Torr by 2-Torr increments, at constant Q and Pla(tm), increased Ppa(tm) from 14 +/- 1 (SE) to 19 +/- 1 mmHg in hyperoxia but did not affect Ppa(tm) (from 22 +/- 2 to 23 +/- 1 mmHg) in hypoxia. Both hypoxia and PEEP, at constant Pla(tm), increased Ppa(tm) over the whole range of Q studied, from 1 to 5 l/min, but more at the highest than at the lowest Q and without change in extrapolated pressure intercepts. Adding PEEP to hypoxia did not affect Ppa(tm) at all levels of Q.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The vasopressor response to graded bolus doses (50-500 micrograms) of serotonin (5-hydroxytryptamine; 5-HT) was examined in the isolated canine lower left lung lobe (LLL) perfused at constant flow with autogenous blood before and after cyclooxygenase inhibition (COI). Lobar vascular resistance (LVR) was partitioned into pre- (Ra) and postcapillary (Rv) segments by venous occlusion with lobar blood volume changes monitored gravimetrically. Before COI, 5-HT produced transient, dose-dependent increases in pulmonary arterial pressure (Ppa) of 43.8 +/- 4.8-123.0 +/- 8.5% (n = 22) and simultaneous decreases in lobar blood volume (5.5 +/- 0.5-8.2 +/- 0.6 g/100 g LLL) with nearly proportionate increases in Ra and Rv at each 5-HT dose. After the initial challenge to 5-HT, LLL's were treated either with saline (n = 7) or one of three chemically distinct cyclooxygenase inhibitors. COI with 40 microM indomethacin (n = 6) or 45 microM meclofenamate (n = 6) increased resting LVR by 36.0 +/- 8.3% (P less than 0.01; n = 12) and decreased the Ra/Rv from 1.9 +/- 0.3 to 1.1 +/- 0.2 (P less than 0.01), whereas 1 mM aspirin (n = 3) caused a fourfold increase in resting LVR without affecting Ra/Rv. After indomethacin or meclofenamate treatment, the vasopressor response to graded doses of 5-HT was markedly potentiated as Ppa increased by 71.6 +/- 7.6-207.0 +/- 24.6%. COI did not potentiate the lobar vasopressor response to graded doses (10-100 micrograms) of norepinephrine (NE, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Transmural pulmonary arterial pressure (Ppa), diameter (D), and length (L) of a segment of the main pulmonary artery (MPA) were measured simultaneously in anesthetized open-chest dogs. The instantaneous volume was calculated from D and L. Pulmonary arterial elasticity for diameter (EpD) was calculated as the ratio of the amplitude of Ppa to D oscillation normalized by the mean D. Similar indexes were calculated for L (EpL) and V (Epv). Compliance per unit length was calculated from the dimensions and elasticity of the MPA. Under control conditions with 5 cmH2O positive end-expiratory pressure, EpD, EpL, and Epv at cardiac frequency were 175 +/- 27, 147 +/- 27, and 55 +/- 7 cmH2O, respectively. EpD increased with positive end-expiratory pressure, but EpL decreased and Epv was unaffected. EpD, EpL, Epv, and compliance per unit length were not significantly different between the start of inspiration and the start of expiration. In addition, there were no significant phase differences between the oscillations of Ppa and V at respiratory frequency. We conclude that the previously reported time variation of pulmonary arterial compliance during the ventilatory cycle is not due to time-varying properties of the MPA.  相似文献   

15.
Hypoxic stimulation of the peripheral chemoreceptors has been reported to inhibit hypoxic pulmonary vasoconstriction. To evaluate the pathophysiological importance of this observation, we investigated the effects of surgical peripheral chemoreceptor denervation on pulmonary vascular tone and gas exchange in 17 pentobarbital-anesthetized dogs with oleic acid pulmonary edema. Pulmonary arterial pressure-cardiac index (Ppa/Q) plots, blood gases, and intrapulmonary shunt measured by the SF6 method were obtained at base line, after peripheral chemodenervation (n = 9) or after sham operation (n = 8), and again after 0.09 ml.kg-1 intravenous oleic acid. Over the range of Q studied (2-5 l.min-1.m-2), Ppa/Q plots were best fitted as first-order polynomials in most dogs in all experimental conditions. Chemoreceptor denervation increased Ppa at the lowest Q, while sham operation did not affect the Ppa/Q plots. Oleic acid increased Ppa over the entire range of Q and increased intrapulmonary shunt. This latter was measured at identical Q during the construction of the Ppa/Q plots. Chemoreceptor-denervated dogs, compared with sham-operated dogs, had the same pulmonary hypertension but lower intrapulmonary shunt (36 +/- 4 vs. 48 +/- 5%, means +/- SE, P less than 0.04) and venous admixture (43 +/- 4 vs. 54 +/- 3%, P less than 0.02). We conclude that in intact dogs chemoreceptor denervation attenuates the rise in intrapulmonary shunt after oleic acid lung injury. Whether this improvement in gas exchange is related to an enhanced hypoxic pulmonary vasoconstriction is uncertain.  相似文献   

16.
Utilizing the arterial and venous occlusion technique, the effects of lung inflation and deflation on the resistance of alveolar and extraalveolar vessels were measured in the dog in an isolated left lower lobe preparation. The lobe was inflated and deflated slowly (45 s) at constant speed. Two volumes at equal alveolar pressure (Palv = 9.9 +/- 0.6 mmHg) and two pressures (13.8 +/- 0.8 mmHg, inflation; 4.8 +/- 0.5 mmHg, deflation) at equal volumes during inflation and deflation were studied. The total vascular pressure drop was divided into three segments: arterial (delta Pa), middle (delta Pm), and venous (delta Pv). During inflation and deflation the changes in pulmonary arterial pressure were primarily due to changes in the resistance of the alveolar vessels. At equal Palv (9.9 mmHg), delta Pm was 10.3 +/- 1.2 mmHg during deflation compared with 6.8 +/- 1.1 mmHg during inflation. At equal lung volume, delta Pm was 10.2 +/- 1.5 mmHg during inflation (Palv = 13.8 mmHg) and 5.0 +/- 0.7 mmHg during deflation (Palv = 4.8 mmHg). These measurements suggest that the alveolar pressure was transmitted more effectively to the alveolar vessels during deflation due to a lower alveolar surface tension. It was estimated that at midlung volume, the perimicrovascular pressure was 3.5-3.8 mmHg greater during deflation than during inflation.  相似文献   

17.
The site of change in pulmonary vascular resistance (PVR) after surfactant displacement with the detergent diocytl sodium sulfosuccinate (OT) was studied in the isolated canine left lower lobe preparation. Changes in PVR were assessed using the arterial and venous occlusion technique and the vascular pressure-flow relationship. Changes in alveolar surface tension were confirmed from measurements of pulmonary compliance as well as from measurements of surface tension of extracts from lung homogenates. After surfactant depletion (the perfusion rate constant) the total pressure gradient (delta PT) across the lobe increased from 13.4 +/- 1 to 17.1 +/- 0.8 mmHg. This increase in delta PT was associated with a significant increase in the arterial and venous gradients (3.7 +/- 0.3 to 4.9 +/- 0.4 and 5.7 +/- 0.5 to 9.4 +/- 0.6 mmHg, respectively) and a decrease in middle pressure gradient (4.1 +/- 0.8 to 2.9 +/- 0.6 mmHg). The vascular pressure-flow relationship supported these findings and showed that the mean slope increased by 52% (P less than 0.05), whereas the pressure intercept decreased slightly but not significantly (3.7 +/- 0.7 to 3.2 +/- 0.8 mmHg). These results suggest that the resistance of arteries and veins increases, whereas the resistance of the middle segment decreases after surfactant depletion. These effects were apparently due to surface tension that acts directly on the capillary wall. Direct visualization of subpleural capillaries supported the notion that capillaries become distended and recruited as alveolar surface tension increases. In the normal lung (perfused at constant-flow rate) changes in alveolar pressure (Palv) were transmitted fully to the capillaries as suggested by equal changes in pulmonary arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We tested the possibility that neuropeptide Y (NPY) may contribute to the pulmonary hypertension that occurs after massive sympathetic activation produced by intracisternal veratrine administration in the chloralose-anesthetized dog. In six dogs, veratrine caused arterial NPY-like immunoreactivity (NPY-LI) to rise from 873 +/- 150 (SE) pg/ml to peak values of 3,780 +/- 666 pg/ml by 60-120 min. (In 3 animals, adrenalectomy significantly reduced the increases in NPY-LI.) In five additional dogs, we infused porcine NPY for 30 min in doses that increased arterial NPY-LI to 8,354 +/- 1,514 pg/ml and observed only minor changes in pulmonary hemodynamics. In three isolated perfused canine left lower lung lobe (LLL) preparations, increasing doses of NPY were administered, producing levels of plasma NPY-LI, at the highest dose, that exceeded those observed after veratrine administration by three orders of magnitude. No changes in LLL arterial or double-occlusion capillary pressures were observed at any dose. Similarly, no changes in LLL hemodynamics were observed in three additional lobes when NPY was administered while norepinephrine was being infused. We conclude that it is unlikely that NPY plays a role as a circulating vasoactive agent in producing the pulmonary hypertension and edema that occur in this model.  相似文献   

19.
We examined the effects of different-sized glass-bead embolization on pulmonary hemodynamics and gas exchange in 12 intact anesthetized dogs. Pulmonary hemodynamics were evaluated by multipoint pulmonary arterial pressure (Ppa)/cardiac output (Q) plots before and 60 min after sufficient amounts of 100-microns (n = 6 dogs) or 1,000-microns (n = 6 dogs) glass beads to triple baseline Ppa were given and again 20 min after 5 mg/kg hydralazine in all the animals. Gas exchange was assessed using the multiple inert gas elimination technique in each of these experimental conditions. Embolization increased both the extrapolated pressure intercepts (by 6 mmHg) and the slopes (by 5 mmHg.l-1.min.m2) of the linear Ppa/Q plots, together with an 80% angiographic pulmonary vascular obstruction. These changes were not significantly different in the two subgroups of dogs. However, arterial PO2 was most decreased after the 100-microns beads, and arterial PCO2 was most increased after the 1,000-microns beads. Both bead sizes deteriorated the distribution of ventilation (VA)/perfusion (Q) ratios, with development of lung units with higher as well as with lower than normal VA/Q. Only 100-microns beads generated a shunt. Only 1,000-microns beads generated a high VA/Q mode and increased inert gas dead space. Hydralazine increased the shunt and decreased the slope of the Ppa/Q plots after 100-microns beads and had no effect after 1,000-microns beads. We conclude that in embolic pulmonary hypertension, Ppa/Q characteristics are unaffected by embolus size up to 1,000 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We examined the acute changes in anastomotic bronchial blood flow (Qbr) serially for the 1st h after pulmonary arterial obstruction and subsequent reperfusion. We isolated and perfused the pulmonary circulation of the otherwise intact left lower lobe (LLL) with autologous blood in the widely opened chest of anesthetized dogs. Qbr was measured from the amount of blood overflowing from the closed pulmonary vascular circuit and the changes in the lobe weight. The right lung and the test lobe (LLL) were ventilated independently. The LLL, which was in zone 2 (mean pulmonary arterial pressure = 14.8 cm H2O, pulmonary venous pressure = 0, alveolar pressure = 5-15 cmH2O), was weighed continuously. The systemic blood pressure, gases, and acid-base status were kept constant. In control dogs without pulmonary arterial obstruction, the Qbr did not change for 2 h. Five minutes after pulmonary arterial obstruction, there was already a marked increase in Qbr, which then continued to increase for 1 h. After reperfusion, Qbr decreased. The increase in Qbr was greater after complete lobar than sublobar pulmonary arterial obstruction. It was unaltered when the downstream pulmonary venous pressure was increased to match the preobstruction pulmonary microvascular pressure. Thus, in zone 2, reduction in downstream pressure was not responsible for the increase in Qbr; neither was the decrease in alveolar PCO2, since ventilating the lobe with 10% CO2 instead of air did not change the Qbr. These findings suggest that there is an acute increase in Qbr after pulmonary arterial obstruction and that is not due to downstream pressure or local PCO2 changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号