共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of HMG14 non-histone protein to histones H2A, H2B, H1 and DNA in reconstituted chromatin 总被引:1,自引:0,他引:1
E Espel J Bernués J A Pérez-Pons E Querol 《Biochemical and biophysical research communications》1985,132(3):1031-1037
The interaction between calf thymus HMG14 and rat liver chromatin components has been studied via reconstitution and chemical cross-linking. Selective labeling of HMG14 with photoactivable reversible heterobifunctional reagents has allowed a clear identification of the histones interacting with it (histones H2A, H2B and H1). These results are not dependent on whether the chromatin samples used were bulk chromatin, mononucleosomes, or core particles (for H2A and H2B). In addition to histone proteins, DNA also seems to be involved in HMG14 attachment to nucleosome. 相似文献
2.
Nucleosome cores reconstituted from poly (dA-dT) and the octamer of histones. 总被引:7,自引:11,他引:7 下载免费PDF全文
D Rhodes 《Nucleic acids research》1979,6(5):1805-1816
In this paper we describe a detailed investigation of the reconstitution of nucleosome cores from poly (dA-dT) and the octamer of histones. We also attempted the reconstitution from the copolymers poly dA.poly dT, poly dG.poly dC and poly (dG-dC). The repeat of the reconstituted chromatin fibre is discussed. The micrococcal nuclease released poly (dA-dT) core particle is found to contain a considerably narrower DNA size distribution that of the native random DNA nucleosome core (12). In addition we have succeeded in obtaining small crystals of the poly (dA-dT) nucleosome core. The DNAase I digestion pattern of the poly (dA-dT) containing nucleosome core is presented. The periodicity of DNAase I cutting sites is found to be about 10.5 bases and is similar to that of the native nucleosome core (12, 13). 相似文献
3.
V G Norton K W Marvin P Yau E M Bradbury 《The Journal of biological chemistry》1990,265(32):19848-19852
High levels of acetylation of lysines in the amino-terminal domains of all four core histones, H2A, H2B, H3, and H4, have been shown to reduce the linking number change per nucleosome core particle in reconstituted minichromosomes (Norton, V. G., Imai, B. S., Yau, P., and Bradbury, E. M. (1989) Cell 57, 449-457). Because there is evidence to suggest that the acetylations of H3 and H4 have functions that are distinct from those of H2A and H2B, we have determined the nucleosome core particle linking number change in minichromosomes containing fully acetylated H3 and H4 and very low levels of acetylation in H2A and H2B. This linking number change was -0.81 +/- 0.05, in close agreement with the linking number change for hyperacetylated nucleosome core particles which contain high levels of acetylation in all four core histones (approximately 70% of full acetylation in H3 and H4). Therefore, high levels of acetylation of H3 and H4 alone are responsible for the reduction in the linking number change per nucleosome core particle. 相似文献
4.
Despite the ubiquity of histones in eukaryotes and their important role in determining the structure and function of chromatin, no detailed studies of the evolution of the histones have been reported. We have constructed phylogenetic trees for the core histones H2A, H2B, H3, and H4. Histones which form dimers (H2A/H2B and H3/H4) have very similar trees and appear to have co-evolved, with the exception of the divergent sea urchin testis H2Bs, for which no corresponding divergent H2As have been identified. The trees for H2A and H2B also support the theory that animals and fungi have a common ancestor. H3 and H4 are 10-fold less divergent than H2A and H2B. Three evolutionary histories are observed for histone variants. H2A.F/Z-type variants arose once early in evolution, while H2A.X variants arose separately, during the evolution of multicellular animals. H3.3-type variants have arisen in multiple independent events. 相似文献
5.
Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B. 相似文献
6.
Histones H2A and H2B are neighbors along DNA in chromatin: characterization of subnucleosomal particles containing H2A+H2B. 总被引:2,自引:1,他引:2 下载免费PDF全文
Two specific slow sedimenting nucleoprotein particles containing equimolar amounts of histones H2A and H2B and 38 or 49 base pair (bp) lengths of DNA have been isolated by centrifugation on sucrose gradients. The 3.4S particles containing 38 bp DNA and H2A+H2B thermally denature at 61 degrees, considerably higher than Proteinase K treated particles (44 degrees), but lower than 11S nucleosomes (76 degrees). Treatment with Proteinase K increases the circular dichroism of 3.4S particles at 280 nm by 63% and decreases the sedimentation coefficient to 2.1S. These results indicate that H2A and H2B are proximate along DNA in nucleosomes and alone can alter the optical activity and perhaps conformation of local regions of DNA. 相似文献
7.
8.
The role of the histone pairs H2A,H2B and H3,H4 in the kinetics of core particle formation was investigated by using N-(1-pyrene)maleimide-labeled histone H3. The excimer emission intensity of a DNA-core histone complex prepared by direct mixing of DNA and histones in 0.2 m-NaCl is reduced by half when H2A,H2B is omitted. Fluorescence quenching studies and lifetime measurements indicate that the emission differences are probably due to static quenching. In a correctly folded nucleosome or a DNA-(H3,H4) complex, the two pyrene rings are buried and are held very close. DNA-(H3,H4) can interact with additional copies of H3,H4, but only when two dimers of H2A,H2B are correctly bound is there a specific twofold increase in excimer emission.The kinetics of the reaction of H3,H4 with DNA in 0.2 m-NaCl were followed by measuring the increase in 460 nm fluorescence. The apparent rate constant of the dominant kinetic component is ~ 2 × 10?1 s?1. If histones H2A,H2B are added immediately after the preparation of the DNA-(H3,H4) complex, an increase in excimer fluorescence is observed, with an apparent rate constant of ~ 6 × 10?3 s?1. However, if histones H2A,H2B are added one hour after DNA-(H3,H4) complex formation, there is no increase in excimer fluorescence. These results suggest that an intermediate involving the H3,H4 tetramer is formed first in nucleosome assembly. In the presence of H2A,H2B, this intermediate evolves to the final folded nucleosome, but in the absence of H2A,H2B it rearranges to an unmaturable dead-end complex. Additional experiments show that a very fast transfer of histone pairs (probably H2A,H2B) can take place between partially reconstituted nucleosomes. 相似文献
9.
Park YJ Chodaparambil JV Bao Y McBryant SJ Luger K 《The Journal of biological chemistry》2005,280(3):1817-1825
Eukaryotic chromatin is highly dynamic and turns over rapidly even in the absence of DNA replication. Here we show that the acidic histone chaperone nucleosome assembly protein 1 (NAP-1) from yeast reversibly removes and replaces histone protein dimer H2A-H2B or histone variant dimers from assembled nucleosomes, resulting in active histone exchange. Transient removal of H2A-H2B dimers facilitates nucleosome sliding along the DNA to a thermodynamically favorable position. Histone exchange as well as nucleosome sliding is independent of ATP and relies on the presence of the C-terminal acidic domain of yeast NAP-1, even though this region is not required for histone binding and chromatin assembly. Our results suggest a novel role for NAP-1 (and perhaps other acidic histone chaperones) in mediating chromatin fluidity by incorporating histone variants and assisting nucleosome sliding. NAP-1 may function either untargeted (if acting alone) or may be targeted to specific regions within the genome through interactions with additional factors. 相似文献
10.
The assembly of an H2A2,H2B2,H3,H4 hexamer onto DNA under conditions of physiological ionic strength 总被引:2,自引:0,他引:2
A novel nucleohistone particle is generated in high yield when a complex of DNA with the four core histones formed under conditions that are close to physiological (0.15 M NaCl, pH 8) is treated with micrococcal nuclease. The particle was found to contain 102 base pairs of DNA in association with six molecules of histones in the ratio 2H2A:2H2B:1H3:1H4 after relatively brief nuclease treatment. Prolonged nuclease digestion resulted in a reduction in the DNA length to a sharply defined 92-base pair fragment that was resistant to further degradation. Apparently normal nucleosome core particles containing two molecules each of the four core histones in association with 145 base pairs of DNA and a particle containing one molecule each of histones H2A and H2B in association with approximately 40 base pairs of DNA were also generated during nuclease treatment of the histone-DNA complexes formed under physiological ionic strength conditions. Kinetic studies have shown that the hexamer particle is not a subnucleosomal fragment produced by the degradation of nucleosome core particles. Furthermore, the hexamer particle was not found among the products of nuclease digestion when histones and DNA were previously assembled in 0.6 M NaCl. The high sedimentation coefficient of the hexameric complex (8 S) suggests that the DNA component of the particle has a folded conformation. 相似文献
11.
Structure of chromatin containing extensively acetylated H3 and H4 总被引:39,自引:0,他引:39
R T Simpson 《Cell》1978,13(4):691-699
I have grown HeLa cells in 5 mM sodium n-butyrate leading to extensive in vivo histone acetylation, and have characterized the structure of chromatin containing the modified histones. Nuclear DNA in butyrate-treated cells is digested 5-10 fold more rapidly by DNAase I than the DNA of control cells. Staphylococcal nuclease degrades the two nuclear samples to acid-soluble material with identical rates; this nuclease, however, does excise nucleosomes with extensively acetylated histones from the nucleoprotein chain preferentially. The physical properties of unsheared chromatin and isolated core particles from control and butyrate-treated cells are closely similar, as are the rates of digestion of core particles from the two cell preparations by DNAase I. Determination of the relative susceptibilities of cleavage sites for DNAase I demonstrates that the site 60 bases from the ends of the DNA resistant in control cells, becomes susceptible to the nuclease in core particles containing acetylated histones. Similarly, the 5' terminal phosphate at the end of DNA in core prticles is removed by staphylococcal nuclease 2-3 fold faster in particles containing acetylated histones than in particles from control cells. 相似文献
12.
Two proteins that resemble core histones and might be specific to the male gametic (generative) nucleus within the pollen of Lilium longiflorum Thumb, (originally designated p22.5 and p18.5; K. Ueda and I. Tanaka, 1994, Planta, 192, 446–452) were characterized biochemically and immunochemically. Patterns of digestion of p22.5 and p18.5 by Staphylococcus aureus V8 protease closely resembled those of somatic histones H2B and H3, respectively. However, peptide fragments that were unique to p22.5 or p18.5 were also detected. Antibodies raised against these proteins did not cross-react with any somatic histones. These results indicate that p22.5 and p18.5 are different from somatic histones in terms of primary structure. Analysis of their amino-acid compositions revealed that p22.5 is a moderately lysine-rich protein while p18.5 is an arginine-rich protein. From these results, we conclude that p22.5 is a variant of histone H2B and p18.5 is a variant of histone H3. Immunofluorescence staining of pollen grains using the specific antibodies revealed that both p22.5 and p18.5 are only present in the generative cell nucleus and are not to be found in the vegetative cell nucleus. This study demonstrates that (i) specific histone variants are present in the male gametic nucleus of a higher plant, as they are in the sperm nucleus of animals, and (ii) distinct differences in histone composition exist between the nuclei of generative and vegetative cells in pollen. These novel histones (p22.5 and p18.5), specific to male gametic nuclei, have been designated gH2B and gH3, respectively.Abbreviations DAPI
46-diamidino-2-phenylindole
- FITC
fluorescein isothiocyanate
The authors thank Dr. Y. Sado (Shigei Medical Institute, Japan) for his helpful advice on immunization and Prof. T. Iguchi and Prof. K. Manabe (Yokohama City University, Japan) for providing facilities for experiments. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan. 相似文献
13.
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes. 相似文献
14.
15.
16.
17.
A F Protas S N Khrapunov A I Dragan G D Berdyshev 《Ukrainski? biokhimicheski? zhurnal》1983,55(2):136-140
The paper is concerned with the isolation of the native histone complexes: dimer (H2A-H2B), tetramer (H3-H4)2 and octamer (H3-H4-H2A-H2B)2 from the calf thymus chromatin under soft conditions (hydroxyl apatite) fractionation with the subsequent gel filtration). Parameters of hydroxyl apatite saturation with chromatin are determined. The complexes obtained are free of DNA and nonhistone proteins. Absorption spectra parameters, quantum efficiencies and fluorescence spectra typical of the corresponding histone oligomers are established. Comparison of free tyrosine fluorescence spectra with histone tyrosyl ones revealed a long-wave shift in the latter. 相似文献
18.
High mobility group protein 17 cross-links primarily to histone H2A in the reconstituted HMG 17-nucleosome core particle complex 总被引:2,自引:0,他引:2
G R Cook P Yau H Yasuda R R Traut E M Bradbury 《The Journal of biological chemistry》1986,261(34):16185-16190
The "neighbor relationship" of lamb thymus high mobility group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125I-Labeled HMG 17 was cross-linked to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/sodium dodecyl sulfate-gel system, located by autoradiography, excised, and quantified. Disulfide bonds in the cross-links were then cleaved, and the protein constituents were identified by sodium dodecyl sulfate-gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between 2 HMG 17 molecules bound on the same nucleosome core particle was relatively rare. We have concluded that H2A comprises part of the HMG 17 binding site. Less contact occurs between HMG 17 and the other core histones, and there is little contact possible between the 2 bound HMG 17 molecules. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17. 相似文献
19.
20.
Distribution of the core histones H2A.H2B.H3 and H4 during cell replication. 总被引:3,自引:0,他引:3 下载免费PDF全文
The distribution of newly synthesized core histones H2A, H2B, H3 and H4 relative to the DNA strand synthesized in the same generation has been examined in replicating Chinese Hamster ovary cells. Cells are grown for one generation in [14C]-lysine and thymidine, and then for one generation in [3H]-lysine and 5-bromodeoxyuridine (BrUdRib) and a further generation in unlabeled lysine and thymidine. This protocol produces equal amounts of unifilarly substituted and unsubstituted DNA. Monomer nucleosomes isolated from chromatin containing these two types of DNA can be distinguished by crosslinking with formaldehyde and banding to equilibrium in CsCl density gradients. The results indicate that the core histones are equally distributed between the two types of DNA. These findings are discussed in terms of current models for chromatin replication; they do not support any long term association of newly replicated histones with either the leading or lagging side of the replication fork. 相似文献