首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Normal excretion of quinolinic acid in Huntington's disease   总被引:2,自引:0,他引:2  
M P Heyes  E S Garnett  R R Brown 《Life sciences》1985,37(19):1811-1816
We measured the excretion of the endogenous neurotoxin quinolinic acid in 14 patients with Huntington's disease and in 11 age matched control subjects. Huntingtonian patients excreted less quinolinic acid, than controls. When normalised to urea or creatinine output quinolinic acid excretion was normal. We conclude that Huntington's disease is not associated with a generalised disturbance of quinolinic acid metabolism, however, a local hyperproduction of quinolinic acid cannot be excluded from our results.  相似文献   

3.
A sensitive chromatographic method for isolation and measurement of quinolinic acid from rat liver and kidney is described. The method is based on the isolation of quinolinic acid by ion-exchange chromatography. The extraction of quinolinic acid consisted of the freeze clamping of the organ in liquid nitrogen, followed by deproteinization in perchloric acid. The neutralized extract was concentrated by freeze-drying and submitted to the action of concentrated perchloric acid to hydrolyze the nucleotides which interfered in the chromatographic separation of quinolinic acid. The sample was applied to a column of Dowex (HCOO?) and eluted with a linear gradient of formic acid. The eluted fraction containing quinolinic acid was quantitatively measured by its absorbance at pH 2 and 268 nm in a spectrophotometer.  相似文献   

4.
The response of the microsomal heme oxygenase in the testis to metal ions distinctly differed from that of the ovarian source. The activity of the ovarian enzyme in rats treated with Co2+ (250 mumol/kg, 24 h) responded in consonance with that of the liver and the kidney, i.e., heme oxygenase activity was elevated. In contrast, similar treatments did not increase the activity of testicular heme oxygenase. In addition, other metal ions, such as Cu2+, Sn2+, Pb2+, and Hg2+, known for their potency to increase heme oxygenase activity, were ineffective in increasing the enzyme activity in the testis. The unprecedented response of heme oxygenase in the testis to metal ions did not reflect an unusual nature of the enzyme protein insofar as it displayed a similar cofactor requirement and inhibition by known inhibitors of the enzyme activity, such as KCN and NaN3. Moreover, the apparent Km's for oxidation of hematoheme by the testicular and ovarian microsomal fractions were comparable and measured 2.3 and 1.4 microM, respectively. In the testis of Co2+-treated rats, the concentration of cytochrome P-450 in the rough and smooth endoplasmic reticular fractions was significantly decreased. The decrease in the hemoprotein level, however, did not reciprocate the activity of heme oxygenase in the fractions. The inability of metal ions to induce heme oxygenase activity in the testis did not represent the general refractory nature of the enzymes of heme metabolism to metal ions in this organ, since in rats treated with Co2+ the activity of delta-aminolevulinate synthetase was significantly decreased 24 h after treatment. However, the activities of uroporphyrinogen-I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the content of porphyrins were not altered in the testis of rats treated with Co2+. The response of delta-aminolevulinate synthetase in the ovarian tissue to Co2+ treatment contrasted that of the testis. In the ovary, the enzyme activity significantly decreased 6 h after treatment. This decrease was followed by a rebound increase at 24 h after administration of Co2+. The presently described inability of metal ions to induce testicular heme oxygenase activity suggests that the activity of the enzyme in the testis is controlled by factor(s) which differ from those regulating the enzyme activity in other organs, including another steroidogenic organ, the ovary.  相似文献   

5.
Acetone powders prepared from the 20,000g participate fraction of spinach (Spinacia oleracea L.) leaves catalyzed the formation of steryl esters from free sterol and 1,2-diacylglycerol as the acyl donor. There was no sterol specificity when cholesterol, sitosterol, and campesterol were compared. When rates of sterol ester biosynthesis were compared using different 1,2-diacylglycerols it was found that the shorter chain fatty acids and the more unsaturated fatty acids were preferred. When the substrate concentration of diacylglycerol was varied, the maximal velocities obtained with the different substrates were dipalmitoleoyl- >dilinolenoyl- >dioleoyl- >dilinoleoyl-glycerol. It was demonstrated by silver nitrate thin-layer chromatography that the fatty acids of the supplied diacylglycerols were transferred to the sterol. When diacylglycerol mixtures were supplied, it was found that unsaturated diacylglycerols greatly stimulated conversion of saturated diacylglycerols to saturated steryl esters. For an equimolar mixture of dipalmitoyl-, dioleoyl-, dilinoleoyl-, and dilinolenoyl-glycerol, about equal amounts of the four steryl ester species were synthesized.  相似文献   

6.
7.
The protein content of three membrane protein preparations has been determined by the Lowry method with bovine serum albumin as a standard and also by quantitative amino acid analysis as an absolute method. The results differ considerably, the Lowry method giving 29–42% higher values. This implies that many published data for such proteins, based on Lowry protein determinations with bovine serum albumin as the generally applied standard, are in error. Suggestions are made on how to standardize the Lowry method so that reliable values can be obtained for membrane protein.  相似文献   

8.
Using methyl-tryoctyl-ammonium chloride (which is soluble in cyclohexane and insoluble in water) it is possible to transport α-chymotrypsin in 20% yield from a water solution to a supernatant cyclohexane solution. The spectroscopic properties of the protein in the aprotic phase are investigated. On the basis of these spectroscopic data, it is argued that under certain conditions no extensive denaturation of the protein takes place in cyclohexane in the presence of the ammonium salt. The possible reason for this unexpected finding and its implications, are discussed.  相似文献   

9.
An isoenzyme of human liver acid phosphatase (orthophosphoric monoester phosphohydrolase (acid optimum), EC 3.1.3.2) has been purified 4560-fold to homogeneity. The purification procedure includes ammonium sulfate fractionation, acid treatment, ion exchange chromatography on O-(carboxymethyl)-cellulose and DEAE-cellulose, Sephacryl S-200 chromatography, and affinity chromatography on Concanavalin A-Sepharose 4B. The homogeneous enzyme is a glycoprotein having 4% carbohydrate by weight in the form of mannose and glucosamine. In polyacrylamide gel electrophoresis under varied conditions of pH and cross-linking, the purified enzyme displays a single protein band coincident with activity. The native enzyme has a molecular weight of 93,000 as determined by gel elution chromatography and consists of two equivalent polypeptide chains. The subunit weight is 50,000–52,000 by sodium dodecyl sulfate gel electrophoresis. l-(+)-Tartrate is a strong competitive inhibitor of the enzyme; Ki is 4.3 × 10?7m at pH 4.8 in 50 mm sodium acetate/100 mm sodium chloride. Ki values for a number of other inhibitors are given. Although it catalyzes the hydrolysis of a variety of phosphomonoesters, this isoenzyme of human liver acid phosphatase does not hydrolyze adenosine 5′-diphosphate, adenosine 5′-triphosphate, pyrophosphate, or choline phosphate at a detectable rate. The values of V differ with different alcohol or phenol leaving groups. The pH dependence of Km and V values for the hydrolysis of p-nitrophenyl phosphate have been determined together with the pH dependence of Ki for l-(+)-tartrate. The pH dependence of both Km and V indicate the effect of substrate ionization (pK ~ 5.2) and the involvement of a group in the EScomplex having a pKa value of approximately 6–7 which is ascribed either to a phosphoryl-enzyme intermediate or to the ionization of substrate in the ES-complex. An irreversible modification of the enzyme and a rapid loss of enzymic activity occurs upon treatment of the enzyme with Woodward's reagent K. The enzyme is protected against inactivation by the presence of competitive inhibitors. These and other data suggest that at least one carboxylic acid group plays an important role in catalysis.  相似文献   

10.
The purification of hog liver 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), and the determination of some of its characteristics, are reported. The enzyme was purified 330-fold in 22% yield from an acetone powder extract by ammonium sulfate fractionation, chromatography twice using sulfopropyl Sephadex under carefully controlled pH conditions (once at pH 5.36 and a second time with a pH gradient from 5.25 to 5.80), and a final chromatography on DEAE-cellulose. The purified enzyme was found to be homogeneous by several standard criteria, but activity measurements indicated that a small amount (less than 5%) of a carboxylesterase (EC 3.1.1.1) isoenzyme is present as a minor impurity. On long-term storage at ?20 °C the enzyme forms polymers but this can be reversed with thiols. The molecular weight of the freshly prepared or depolymerized enzyme was estimated to be 89,000 ± 2000 by equilibrium ultracentrifugation, and 50,000 to 54,000 by gel filtration. Sodium dodecyl sulfate-gel electrophoresis experiments, performed in the presence and absence of mercaptoethanol, indicate that the enzyme is composed of two nonidentical subunits with similar molecular weights (44,000 ± 2000). The enzyme gives a typical protein ultraviolet absorption spectrum with no noticeable peaks above 300 nm, it has no detectable carbohydrate content, and it contains 0.9 atom iron and 0.4 atom copper/89,000 daltons. Added iron and copper salts activate the enzyme to some extent but by less than a factor of 2. The enzymatic reaction has a large temperature coefficient (the rate increases ca. fivefold for each 10 °C rise) and is markedly stimulated (up to sixfold) by the presence of some organic solvents in concentrations up to 10% of the medium. These results suggest that a protein conformation change, possibly aided by binding of the organic solvent, is involved in the rate-determining step of the reaction. The similarities and differences of this 4-hydroxyphenylpyruvate dioxygenase to those from other sources, and to prolyl hydroxylase, are discussed.  相似文献   

11.
The influence of pH on the kinetics of the initial rate of calcium uptake by isolated kidney mitochondria was studied using the ruthenium red-ethylene glycol bis(β-aminoethyl ether) N,N-tetraacetic acid quench method (K. Reed and F. Bygrave, 1975, Eur. J. Biochem.55, 497–504). In the absence of phosphate, the Km is increased 50% and the V is decreased 57% when the pH is decreased from pH 7.4 to 7.0. Conversely, when the pH is increased to 7.8, the Km is decreased 25% while the V is not affected. The presence of 0.1 or 0.4 mm phosphate in the incubation medium abolishes the change in Km at a low pH while the V remains depressed by 36 and 25%, respectively. The presence of phosphate does not affect the decrease in the Km seen with an increased medium pH. Mitochondria incubated in steady-state conditions with a medium free calcium of 0.7 μm also show significant changes in calcium exchange and distribution with pH. Two kinetic calcium pools are found in isolated mitochondria. Decreasing pH from 7.4 to 7.1 decreases mitochondria total calcium 32%, decreases the rapidly exchanging pool 28%, and depresses both the mitochondrial membrane and an intramitochondrial calcium exchange by 54 and 22%, respectively. Raising the pH to 7.7 increases both exchangeable pools (63 and 46%), and increases the mitochondrial membrane calcium exchange 44%. These results are consistent with previous studies on the influence of intracellular pH on calcium metabolism of kidney cells in which the mitochondrial pool was markedly affected by pH (R. Studer, and A. Borle, 1979, J. Membrane Biol.48, 325–341). Alterations in cellular pH may modify mitochondrial calcium transport and cellular calcium metabolism and thus affect cell functions which are calcium dependent.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach was inactivated by a carboxyl-directed reagent, Woodward's reagent K ( WRK ). The inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by WRK was 1.1, suggesting that inactivation was the consequence of modifying a single residue per active site. The substrate ribulose 1,5-bisphosphate (RBP), two competitive inhibitors, fructose 1,6-bisphosphate (FBP) and sedoheptulose 1,7-bisphosphate (SBP), and a number of sugars-phosphate protected against inactivation by WRK . SBP was a strong protector, displaying a dissociation constant (Kd) of 3 microM with native RBP carboxylase. Pretreatment of RBP carboxylase with diethyl pyrocarbonate prevented WRK incorporation into the enzyme. The enol ester derivative produced by reaction of WRK with RBP carboxylase has a maximal absorbance at 346 nm, and the extinction coefficient was found to be 12300 +/- 700 M-1 cm-1. Spectrophotometric titration of the number of carboxyl groups modified by WRK in RBP carboxylase/oxygenase in the presence and in the absence of SBP suggests that inactivation was associated with the modification of one carboxyl group per active site.  相似文献   

13.
Of the 14 cyanogen bromide fragments derived from Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase, four are too large to permit complete sequencing by direct means [F. C. Hartman, C. D. Stringer, J. Omnaas, M. I. Donnelly, and B. Fraij (1982) Arch. Biochem. Biophys. 219, 422-437]. These have now been digested with proteases, and the resultant peptides have been purified and sequenced, thereby providing the complete sequences of the original fragments. With the determination of these sequences, the total primary structure of the enzyme is provided. The polypeptide chain consists of 466 residues, 144 (31%) of which are identical to those at corresponding positions of the large subunit of spinach ribulosebisphosphate carboxylase/oxygenase. Despite the low overall homology, striking homology between the two species of enzyme is observed in those regions previously implicated at the catalytic and activator sites.  相似文献   

14.
Microsomes from liver or kidney of untreated rainbow trout hydroxylated lauric acid specifically at the (omega-1) position. Turnover numbers for liver (2.72 min-1) and kidney (14.1 min-1) were decreased seven- and twofold, respectively, following treatment with beta-naphthoflavone. Laurate hydroxylation activity from untreated trout hepatic microsomes was sensitive to inhibition by SKF-525A, but was not sensitive to metyrapone and only partially inhibited by alpha-naphthoflavone. The temperature optimum of laurate (omega-1) hydroxylation in trout liver microsomes was 25-30 degrees C. The Km and Vmax for (omega-1)- hydroxylaurate formation was 50 microM and 1.63 nmol min-1 mg-1, respectively, in liver and 20 microM and 3.95 nmol min-1 mg-1, respectively, in kidney from untreated trout microsomes. (omega-1) Hydroxylation of laurate, in both liver and kidney microsomes, was sensitive to an antibody raised against a previously purified cytochrome P-450 isozyme (LM2) of trout liver microsomes, which has been shown to be active towards aflatoxin B1. Antibody to the major isozyme of cytochrome P-450 ( LM4b , active towards benzo(a)pyrene) induced by beta-naphthoflavone did not inhibit (omega-1) hydroxylation of laurate in microsomes from untreated or beta-naphthoflavone-treated trout.  相似文献   

15.
As a part of the goal to determine the total sequence of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase, the cyanogen bromide fragments were fractionated and sequenced (or partially sequenced). Twelve of the anticipated 14 peptides were obtained in highly purified form. The other two peptides were located, respectively, within a trytophanyl cleavage product (which overlapped with four CNBr fragments) and within an active-site peptide characterized earlier (which overlapped with three CNBr fragments). These overlaps coupled with amino and carboxyl terminal sequence information of the intact subunit and the availability of the sequence of the corresponding enzyme from higher plants permitted alignment of all fragments. Eight CNBr peptides were sequenced completely; four of the CNBr peptides consisted of more than 80 residues and were only partially sequenced as permitted by direct Edman degradation. Of the approximate 475 residues per subunit, 339 were placed in sequence. The lack of extensive conservation of primary structure between R. rubrum and higher plant carboxylases permits the tentative identifications of those regions likely to be functionally important.  相似文献   

16.
Urea isoelectric focusing of dissociated, carboxymethylated Nicotiana tabacum ribulose-1,5-bisphosphate carboxylase/oxygenase reveals catalytic subunit microheterogeneity. Aggregated or nonaggregated sucrose gradient-purified preparations and the crystalline protein displayed essentially identical large subunit multiple polypeptide patterns. Various pretreatments which fully dissociate the holoenzyme did not alter catalytic subunit microheterogeneity. Direct comparison of the carboxymethylated and noncarboxymethylated crystalline and sucrose gradient-purified proteins demonstrated that the large subunit multiple polypeptide pattern was not an artifact of carboxymethylation. The inclusion of the seryl protease inhibitor phenylmethylsulfonyl fluoride during purification of the holoenzyme did not affect the large subunit multiplicity. However, the addition of leupeptin, a potent thiol proteinase inhibitor, to all solutions during purification of the native protein markedly reduced large subunit polypeptide L3 and increased the staining of polypeptide L2, suggesting that L3 is a leupeptin-sensitive proteinase degradation product of L2. Polypeptide L1 also appeared to be a purification-related artifact, but derived from a modification of L2 other than that which yielded L3. We conclude that polypeptide L2 is the single, native isoelectric form of the catalytic subunit of tobacco ribulosebisphosphate carboxylase/oxygenase.  相似文献   

17.
A factor(s) that has properties similar to previously described limb-bud polarizing activity and ectodermal ridge maintenance activity can be detected in cell-free preparations of posterior, but not anterior, halves of 4-day chick embryo limb buds. The apparent size of the factor differs depending upon the method of isolation. Homogenization in isotonic saline results in a particulate active component, whereas homogenization in hypertonic saline results in a soluble active component that is nondialyzable. When culture medium is conditioned by incubating several pieces of polarizing tissue in it for 24 hr, a dialyzable, active component is found in the conditioned medium.  相似文献   

18.
Acetone powders prepared from a 20,000g participate preparation from spinach leaf catalyzed several reactions involving monoacylglycerol and diacylglycerol. When these substrates were presented as Triton X-100-mixed micelles, diacylglycerol gave rise to free fatty acids, monoacylglycerol, triacylglycerols, and steryl esters, and in the presence of ethanol, small amounts of ethyl esters of fatty acid. Monoacylglycerol gave rise to free fatty acids and diacylglycerol, and in the presence of ethanol, large amounts of ethyl esters of fatty acid. In the presence of bovine serum albumin, the conversion of monoacylglycerol to free fatty acid was retarded. In the presence of bovine serum albumin, steryl ester was an important product from diacylglycerol. The system containing Triton X-100-mixed micelles and bovine serum albumin permitted analysis of reaction products which showed diacylglycerol to be an acyl donor in steryl ester biosynthesis. All reactions observed in the mixed micelle system were transacylation reactions involving various acceptors: dipalmitoylglycerol → monopalmitoylglycerol + palmitate; monopalmitoylglycerol → glycerol + palmitate; dipalmitoylglycerol + sterol → monopalmitoylglycerol + steryl palmitate; monopalmitoylglycerol + ethanol → ethyl palmitate + glycerol; monopalmitoylglycerol → dipalmitoylglycerol (+glycerol); dipalmitoylglycerol → tripalmitoylglycerol (+monopalmitoylglycerol).  相似文献   

19.
Homoursodeoxycholic acid and [11,12-3H]homoursodeoxycholic acid were synthesized from ursodeoxycholic acid and homocholic acid, respectively. Ursodeoxycholic acid (Ia) was converted to 3α,7β-diformoxy-5β-cholan-24-oic acid (Ib) using formic acid. Reaction of the diformoxy derivative (Ib) with thionyl chloride yielded the acid chloride (II) which was treated with diazomethane to produce 3α,7β-diformoxy-25-diazo-25-homo-5β-cholan-24-one (III). Homoursodeoxycholic acid (IV) was formed from the diazoketone (III) by means of the Wolff rearrangement of the Arndt-Eistert synthesis.N-Bromosuccinimide oxidation of homocholic acid (V), which was prepared from cholic acid by the same procedure described above, afforded 3α,12α-dihydroxy-7-oxo-25-homo-5β-cholan-25-oic acid (VI). Reduction of the 7-ketohomodeoxycholic acid (VI) with sodium in 1-propanol gave 3α,7β,12α-trihydroxy-25-homo-5β-cholan-25-oic acid (VII). The methyl ester of 7-epihomocholic acid (VII) was partially acetylated to give methyl 3α,7β-diacetoxy-12α-hydroxy-25-homo-5β-cholan-25-oate (VIII) using a mixture of acetic anhydride, pyridine and benzene. Dehydration of the diacetoxy derivative (VIII) with phosphorus oxychloride yielded methyl 3α,7β-diacetoxy-25-homo-5β-chol-11-en-25-oate (IX). Reduction of the unsaturated ester (IX) with tritium gas in the presence of platinum oxide catalyst followed by alkaline hydrolysis gave [11,12-3H]homoursodeoxycholic acid.  相似文献   

20.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号