首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of growth temperature on the lipid fatty acid composition was studied over a temperature range from 35 to 10° C with 5° C intervals in four exponentially growing fungi: Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Trichoderma reesei. Fatty acid unsaturation increased in A. niger, P. chrysogenum, and T. reesei when the temperature was lowered to 20–15, 20, and 26–20° C, respectively. In A. niger and T. reesei, this was due to the increase in linolenic acid content. In P. chrysogenum, the linolenic acid content increased concomitantly with a more pronounced decrease in the less-unsaturated fatty acid, oleic acid, and in palmitic and linoleic acids; consequently, the fatty acid content decreased as the temperature was lowered to 20° C. In T. reesei, when the growth temperature was reduced below 26–20° C, fatty acid unsaturation decreased since the mycelial linolenic acid content decreased. In A. niger and P. chrysogenum, the mycelial fatty acid content increased greatly at temperatures below 20–15° C. In contrast, in N. crassa, fatty acid unsaturation was nearly temperature-independent, although palmitic and linoleic acid contents clearly decreased when the temperature was lowered between 26 and 20° C; concomitantly, the growth rate decreased. Therefore, large differences in the effects of growth temperature on mycelial fatty acids were observed among various fungal species. However, the similarities found may indicate common regulatory mechanisms causing the responses. Received: 1 March 1995 / Accepted: 8 May 1995  相似文献   

2.
Cyanobacteria desaturate fatty acids in the membrane lipids in response to decrease in temperature. We examined the changes in lipid and fatty acid composition in the thermophilic cyanobacterium Synechococcus vulcanus, which is characterized by an optimum growth temperature of 55°C. During temperature acclimation to 45°C or 35°C, the cells synthesized oleic acid at the expense of stearic acid in the membrane lipids. Unlike mesophilic cyanobacteria, S. vulcanus did not show any significant adaptive desaturation in the galactolipids monogalactosyl diacylglycerol and digalactosyl diacylglycerol, that comprise 50% and 30% of total membrane lipids, respectively. The major changes in fatty acid unsaturation were observed in the sulfolipid sulfoquinovosyl diacylglycerol.  相似文献   

3.
The total lipid and fatty acid content ofSpirulina platensis UTEX 1928 was 7.2 and 2.2% respectively of cellular dry weight under controlled conditions supporting high growth rates. With increases in irradiance from 170 to 870 μmol photon m?2 s?1, growth rate increased, total lipid decreased, and fatty acid composition was unaffected. At 1411 μmol photon m?2 s?1, total lipid increased slightly and percent composition of the fatty acid gamma linolenic acid increased. Growth and total lipid content ofS. platensis were affected by changes in growth temperature from 25 to 38 °C. With increased growth rate, total lipid content increased. This suggests that the storage of carbon increases at temperatures supporting high growth rates. The degree of saturation increased with temperature. Although the percent composition of gamma linolenic acid was higher at lower growth temperature, production was still primarily a function of growth rate. The effect of temperature on fatty acid content and degree of saturation was of secondary importance. Nitrogen starvation increased total lipid content but decreased fatty acid content as a percentage of dry weight; composition of the fatty acids was unaffected. N-starvation appeared to suspend synthesis of long chain fatty acids inS. platensis, suggesting that some other compound stores fixed carbon when nitrogen is limiting. It was concluded that fatty acid production inS. platensis is maximized by optimizing culture conditions for growth.  相似文献   

4.
《Journal of Asia》2007,10(1):33-38
Cold acclimation and overwintering state can affect fatty acid compositions of insects. To determine compositional change of fatty acids during nondiapause and diapause stages, an experiment was conducted to investigate fatty acid constituents from whole body of C. suppressalis larvae. Five most abundant fatty acids were found to be palmitoleic (35–58%), palmitic (18–44%), oleic (14–23%), stearic (0.5–2.5%) and linoleic acid (0.4–2%). However, linolenic, erucic, lauric and myristic acid were found at lower level. Saturated fatty acids significantly decreased and conversely unsaturated fatty acids increased from August (pre-diapause) to October (initiation of diapause). The increase in seasonal cold hardiness during cold acclimation, exposed at −15°C for 24 h, was related to degree of fatty acid unsaturation. The elevation of palmitoleic acid content at low temperature resulted in an increase in the overall degree of unsaturation in the whole body. These results indicated the importance of unsaturated fatty acids composition to prepare larvae entering diapause phase.  相似文献   

5.
Summary The oleaginous fungus Entomophthora exitalis was grown in continuous culture at a constant dilution rate (0.04 h–1) and over a range of temperatures (20–30° C). As the growth temperature was decreased from 30 to 20° C the percentage of polyunsaturated fatty acids (PUFA) increased proportionally from 18 to 27% (w/w) of the total fatty acids. The increase in unsaturation was as a result of an increased proportion of n-6 PUFA (particularly arachidonic acid) in the phospholipid and sphingo- plus glycolipid fractions. The triacylglycerol fraction of lipids displayed a negligible change. The proportion of phospholipids within the extracted lipid increased between 26 and 20° C without any change in the lipid content of the fungus. Although the changes in lipid unsaturation correlated, at first inspection, to the culture dissolved O2 tension (DOT), growth of the fungus at a constant dilution rate and temperature (22° C) over a range of DOT values failed to influence lipid unsaturation. Thus temperature is the principal regulation factor of the degree of unsaturation in the lipids of this organism. Offprint requests to: C. Ratledge  相似文献   

6.
The fatty acid composition of phospholipids in thoracic muscles of Pyrrhocoris apterus was related to acclimatization temperature and diapause. Two unsaturated fatty acids, linoleic (18:2n-6) and oleic (18:1n-9), and two saturated, palmitic (16:0) and stearic (18:0), dominated at all temperatures. In contrast to most other reports, the proportion of unsaturated fatty acids did not increase with decreasing temperature; there was a positive correlation between the unsaturation ratio and temperature in total phospholipids (r=0.67). The most prominent response to cold acclimatization was an increase in the proportion of 16:0 fatty acid and a corresponding decrease in the proportion of fatty acids with 18 carbons. The negative correlation between the proportion of 16:0 and temperature was stronger in phospholipids with phosphatidylethanolamine (PE) head group (r=−0.85) than in phospholipids with phosphatidylcholine (PC) head group (r=−0.58). Changes in fatty acid profiles associated with photoperiodic induction of diapause had the same trend as changes related to cold acclimatization. Similar to most other reports, the proportion of PE increased, while the proportion of PC decreased with decreasing temperature. In contrast to a general rule, the PE-phospholipids were less unsaturated than PC-phospholipids.  相似文献   

7.
《Fungal biology》2014,118(9-10):792-799
Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI–TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography–mass spectrometry (GC–MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats.  相似文献   

8.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

9.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

10.
  • 1.1. Digestive gland and mantle fatty acids were studied in spring and summer in the bivalve Macoma balthica off the southern coast of Finland. The presence of lipids was also examined histochemically in various clam tissues.
  • 2.2. the neutral lipid content of the digestive gland increased ca 4.5-fold during the annual growth period.
  • 3.3. Neutral lipid fatty acids of the digestive gland, of which palmitoleic, eicosapentaenoic and palmitic acids were predominant, were clearly distinguished from phospho- and glycolipid fatty acids.
  • 4.4. The degree of unsaturation of phospholipid fatty acids was higher in the cold season both in the digestive gland and mantle, mainly due to the titer of eicosapentaenoic acid.
  相似文献   

11.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

12.
Narasin, a polyether ionophorous antibiotic capable of acting as a transmembrane carrier of cations, has a growth inhibitory effect on Acholeplasma laidlawii, permitting only 20% survival when present at 0.1 μg/ml in an undefined growth nutrient or fatty acid-deficient nutrient supplemented only with palmitic acid. When A. laidlawii is propagated in fatty acid-deficient nutrient supplemented with linoleic acid, however, the organisms become 40 times more sensitive to the growth inhibitory effect of this antibiotic. The actual fatty acid compositions of the membranes would indicate that a higher degree of unsaturation enhances ionophore activity.  相似文献   

13.
The effects on membrane structure of including various fatty acids and cholesterol in the growth medium of Acholeplasma laidlawii were investigated by the use of spin-labeled fatty acids. Although the order-mobility parameters varied significantly at some temperatures with the nature of the fatty acid incorporated, the value measured at the growth temperature was only slightly affected by changes in the fatty acid composition of the membranes. The data confirm previous assertions that despite a high level of incorporation of fatty acids of various chain lengths or degree of unsaturation, A. laidlawii regulates its overall membrane fluidity within close limits at the growth temperature. Incorporation of cholesterol increased the degree of order at all temperatures. The coexistence of two lipid phases, one protein-dependent, could be observed in membranes. The order-mobility parameter of spin probes proved less satisfactory for the observation of a gel to liquid crystal transition of the membrane lipid than the partition parameter of a fatty acid spin probe. Order parameters measured by fatty acid spin probes were somewhat higher than those measured by the analogous 2H nmr probes.  相似文献   

14.
Wada H  Murata N 《Plant physiology》1990,92(4):1062-1069
Changes in glycerolipid and fatty acid composition with a change in growth temperature were studied in the cyanobacterium, Synechocystis PCC6803. Under isothermal growth conditions, temperature did not significantly affect the composition of the various classes of lipids, but a decrease in temperature altered the degree of unsaturation of C18 acids at the sn-1 position, but not that of C16 acids at the sn-2 position of the glycerol moiety in each class of lipids. When the growth temperature was shifted from 38°C to 22°C, the desaturation of C18 acids, but not that of C16 acids, was stimulated. The desaturation of fatty acids occurred only in the light and was inhibited by chloramphenicol, rifampicin and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, but not by cerulenin, an inhibitor for fatty acid synthesis. These findings suggest that desaturase activities are induced after a shift from a higher to a lower temperature, and that the desaturation of fatty acids is connected with the reactions involved in photosynthetic electron transport.  相似文献   

15.
Oxidation of low density lipoproteins (LDL) in the presence of myeloperoxidase and subsequent uptake of the oxidized LDL by specialized receptors on macrophages has been suggested as an initiating event of atherosclerosis. Oxidized fatty acid chains within the glycerophospholipids of LDL have been implicated as the recognition feature by the receptors. The ability of three fatty acids (oleic, linoleic, and arachidonic acids) typically contained in the lipid portion of the glycerophospholipids to bind and be oxidized by myeloperoxidase was measured by spectroscopically observing interactions of the lipids with the heme prosthetic group of the enzyme. As unsaturation increases in the lipid chain, myeloperoxidase binds and oxidizes the fatty acid more readily, as measured by KD, KM, and kcat. A possible mechanism of the free radical oxidation by myeloperoxidase is discussed.  相似文献   

16.
The temperature of C. japonica cultivation influences the lipid content and composition of acyl chains, especially the content of such polyunsaturated acids as linoleic and linolenic. Thermal adaptation is accompanied by the modulation of fatty acid isomeric composition and acyl chain length and, at low temperatures, promotes the appearance of fatty acids uncommon to the fungus, in particular, arachidonic acid. The changes occur on a background of significant alterations in the fungus metabolism (in glucose uptake, ATP content, economic coefficient value, etc.). In experiments on the inhibition of translation with cycloheximide, abrupt temperature change (supraoptimal to cold) did not lead to desaturase de novo synthesis, but rather stimulated the activity of the named enzymes, except for palmitoleoyl-CoA desaturase. In the process of temperature adaptation, polar lipid microviscosity modulating compounds influenced fatty acid acyl chain composition. Microviscosity differences between polar and neutral lipids and correlation to the degree of fatty acid unsaturation during temperature fluctuation were established.  相似文献   

17.
Changes in response to temperature of lipid classes, fatty acid composition and mRNA levels for acyl-lipid desaturase genes were studied in the marine unicellular cyanobacterium, Synechococcus sp. PCC 7002. The degree of unsaturation of C18 fatty acids increased in cells grown at lower temperature for all lipid classes, and ω3 desaturation occurred specifically in cells grown at low temperature. While the level of 18:1(9) fatty acids declined, desaturation at the ω3 position of C18 fatty acids increased gradually during a 12-h period after a temperature shift-down to 22°C. However, the mRNA levels of the desA (Δ12 desaturase), desB (ω3 desaturase) and desC (Δ9 desaturase) genes increased within 15 min after a temperature shift-down to 22°C; the desaturase gene mRNA levels also rapidly declined within 15 min after a temperature shift-up to 38°C. Therefore, the elevation of mRNA levels for the desaturase genes is not the rate-limiting event for the increased desaturation of membrane lipids after a temperature shift-down. The rapid, low-temperature-induced changes in mRNA levels occurred even when cells were grown under light-limiting conditions for which the growth rates at 22°C and 38°C were identical. These studies indicate that the ambient growth temperature, and not some other growth rate-related process, regulates the expression of acyl lipid desaturation in this cyanobacterium.  相似文献   

18.
Obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts were cultured in a carbon-rich medium at different temperatures to investigate whether growth parameters, lipid accumulation, and fatty acid (FA) composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to a lower temperature decreased their specific growth rate, but did not affect their biomass yield (YX/S). Obligate and facultative psychrophiles exhibited the highest YX/S. Acclimation to lower temperature decreased the lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophilic ones. Similar YL/X were found in both groups of psychrophiles, suggesting that lipid accumulation is not a distinctive characteristic of adaptation to permanently cold environments. The unsaturation of FAs was one major adaptive feature of the yeasts colonizing permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expense of linoleic acid, whereas it was scarce or absent in all the other strains. Increased unsaturation of FAs was also a general acclimatory response of facultative psychrophiles to a lower temperature. These results improve the knowledge of the responses enabling psychrophilic yeasts to cope with the cold and may be of support for potential biotechnological exploitation of these strains.  相似文献   

19.
Low temperatures affect many plant physiological and biochemical components, amongst them the lipid phase of membranes. The present work aimed to characterize the lipid composition of chloroplast membranes of three Coffea genotypes, representing three agronomic valuable species (Coffea arabica cv. Icatu, Coffea canephora cv. Conilon clone 02 and Coffea dewevrei), under adequate environmental conditions and to relate its cold tolerance ability to the adjustments triggered during a gradual temperature decrease, after chilling exposure and upon a recovery period. Under adequate temperature (25/20 °C, day/night) the lipid composition of chloroplast membranes was fairly similar amongst the genotypes concerning the total fatty acid (TFA) content and individual FAs (both globally or within the classes), suggesting a close lipid composition amongst Coffea species, which can be considered as “C18:3” plants. Under cold exposure and subsequent recovery the genotypes undergo adjustments, some of them with acclimation potential. The genotypes displayed some ability to increase lipid synthesis, increasing their FA content. However, under cold exposure (even at 4 °C), Icatu and C. dewevrei plants performed qualitative adjustments, including preferential synthesis of phospholipids (especially PG) instead of galactolipids and increases in the unsaturation degree of DGDG and phospholipid classes (PG, PC and PI). Clone 02 maintained almost all lipid characteristics, what explains its higher cold sensitivity. Furthermore, differences that contribute to explain contrasting cold sensitivity in Icatu (more tolerant) and C. dewevrei emerged when analyzing PA content (taken as a stress metabolite) and the FA composition within MGDG and PG classes. C. dewevrei presented the higher increase, absolute value and relative weight of PA, while Icatu was the solely genotype to show a rise in the unsaturation degree of MGDG and PG, displaying as well the highest DBI values for these classes. We conclude that lipid qualitative and quantitative adjustments constitute a flexible mechanism that decisively contributes to cold acclimation in Coffea spp., working in tandem with others that minimize oxidative stress damages.  相似文献   

20.
The relationships of potato (Solanum tuberosum L.) tuber membrane permeability and membrane lipid composition to sugar accumulation were examined. Tubers from four potato cultivars were stored for 40 weeks at 3°C and 9°C. Rates of tuber membrane electrolyte leakage, total fatty acid composition, free fatty acid composition, and sugar content were measured throughout the storage period. Storage of tubers at 3°C caused dramatic increases in total fatty acid unsaturation, membrane permeability, and sugar content compared to tubers stored at 9°C. Cultivars with higher levels of fatty acid unsaturation had lower rates of membrane electrolyte leakage and lower sugar contents. We propose that high initial levels or high induced levels of membrane lipid unsaturation mitigate increases in tuber membrane permeability during storage, thus positively influencing the processing quality of stored potato tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号