首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

2.
3.
4.
5.
A rapid method for the measurement of the 24-hydroxylated metabolites of 25-hydroxy[26,27-3H]vitamin D3 and 1,25-dihydroxy[26,27-3H]vitamin D3 has been developed. This measurement has, in turn, made possible a rapid assay for the 24-hydroxylases of the vitamin D system. The assay involves the use of 26,27-3H-labeled 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 as the substrate and treatment of the enzyme reaction mixture with sodium periodate, which specifically cleaves the 24-hydroxylated products between carbons 24 and 25, releasing tritiated acetone. The acetone is measured after its separation from the labeled substrate by using a reversed-phase cartridge. The results obtained with this assay were validated by comparison with the results obtained with a well-established high-performance liquid chromatography assay. The activity of the enzyme determined by both methods was equal. This assay has been successfully used for the rapid screening of column fractions during purification of the enzyme and in the screening for monoclonal antibodies to the 24-hydroxylase.  相似文献   

6.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

7.
8.
Female rats were given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 0.25 g per 100 g body weight (bw), 25-hydroxyvitamin D3 (25(OH)D3), 1.7 g/100 g bw or 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 1.7 g/100 g bw, subcutaneously three times a week for 12 weeks. Traditional variables pertaining to calcium homeostasis and growth, i.e. blood and urine calcium (Ca) and phosphate (P), serum levels of vitamin D3 metabolites parathyroid hormone, (PTH), calcitonin (CT), prolactin (PRL) and growth hormone (GH) were measured every four weeks. This data pool was correlated with bone matrix turnover parameters, i.e. serum levels of alkaline phosphatase (ALP) and urinary hydroxyproline (u-HYP) excretion. After 12 weeks of treatment, 1,25(OH)2D3 significantly enhanced serum total and ionized Ca, urine Ca and urine P, and also diminished urine cAMP due to reduced renal function (creatinine clearance). However, 25(OH)D3 administration had no such impact. 24,25(OH)2D3 opposed the effect of 1,25(OH)2D3 after 12 weeks by significantly augmenting serum P and diminishing serum levels of total Ca and ionized Ca. Cross sectional group analyses showed that criculating levels of ALP were directly related with serum 1,25(OH)2D3 and inversely related to serum 24,25(OH)2D3 and CT. Total u-HYP and per cent non-dialysable HYP (ndHYP) were reciprocally and positively correlated with serum PRL, respectively. However, no such relations were observed with serum GH.It appears that rats with elevated circulating levels of 1,25(OH)2D3 exhibit increased bone resorption, while augmented 24,25(OH)2D3 is associated with the opposite. Apparently, high bone turnover (i.e. reduced total urinary HYP and enhanced ndHYP) is associated with high serum PRL.  相似文献   

9.
Using a cDNA probe for rat renal 24-hydroxylase, expression of its mRNA was compared in the rat kidney and intestine. Vitamin D-deficient rats received a single injection of 1 alpha,25-dihydroxyvitamin D3. Expression of 24-hydroxylase mRNA was first detected in the kidney at 3-h post-injection and increased thereafter. Similarly, 24-hydroxylase mRNA was expressed in the intestine after 1 alpha,25-dihydroxyvitamin D3 injection. However, the dose level of 1 alpha,25-dihydroxyvitamin D3 required to induce the intestinal 24-hydroxylase mRNA expression was only 1/100 the amount required to induce renal 24-hydroxylase mRNA. Induction of intestinal 24-hydroxylase mRNA expression by 1 alpha,25-dihydroxyvitamin D3 was far more rapid than that of renal 24-hydroxylase mRNA. Thyroparathyroidectomy shortened the time required to induce expression of renal, but not intestinal, 24-hydroxylase mRNA. Administration of either parathyroid hormone or cAMP to vitamin D-deficient rats greatly reduced the expression of 24-hydroxylase mRNA in the kidney but not in the intestine. When rats were fed a vitamin D-repleted diet containing 0.7% (adequate) or 0.03% (low) calcium for 2 weeks, intestinal expression of 24-hydroxylase mRNA could be induced only in the low calcium group. In contrast, renal mRNA expression was preferentially stimulated in the adequate calcium group. These results clearly demonstrate that the expression of 24-hydroxylase mRNA is down-regulated by parathyroid hormone in the kidney but not in the intestine.  相似文献   

10.
11.
Structural similarities between 25S,26-dihydroxyvitamin D3 and 25-hydroxyvitamin D3-26,23-lactone and their concomitant multifold increase in the plasma of animals treated with pharmacological doses of vitamin D3 suggest a precursor-product relationship. However, a single dose of 25S,26-[3H]dihydroxyvitamin D3 given to rats treated chronically with pharmacological amounts of vitamin D3 did not result in detectable plasma 25-[3H]hydroxyvitamin D3-26,23-lactone. Multiple doses of synthetic 25S,26-dihydroxyvitamin D3 given to vitamin D3-deficient rats treated chronically with pharmacological amounts of vitamin D2 also did not result in detectable plasma 25-hydroxyvitamin D3-26,23-lactone. Furthermore, homogenates prepared from vitamin d-deficient chickens, dosed with 1,25-dihydroxyvitamin D3, converted 25-[3H]hydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. But these same homogenates did not convert 25S,26-[3H]dihydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. These data indicate that 25,26-dihydroxyvitamin D3 is not an intermediate in 25-hydroxyvitamin D326, 23-lactone formation.  相似文献   

12.
The regulatory role of 1alpha,25-dihydroxyvitamin D3 [1alpha,25-(OH)2-D3] in metabolism of 25-hydroxyvitamin D was studied in sham-operated (sham) or thyroparathyroidectomized (TPTX) vitamin D-deficient rats into which calcium and parathyroid hormone (PTH) were constantly infused. A single dose of 325 or 650 pmol of 1alpha,25-(OH)2-D3 caused significant inhibition of 1alpha,25-(OH)2-D3 synthesis in D-deficient sham rats. This inhibition by 1alpha,25-(OH)2-D3, however, was not observed in D-deficient TPTX rats into which PTH was constantly infused. These results can be explained by supposing that the major regulatory effect of 1alpha,25-(OH) 2-D3 on 1alpha,25-(OH)2-D3 synthesis is realized mostly, if not all, by suppressing endogenous secretion of PTH.  相似文献   

13.
The ability of embryonic chick bone to respond to 25 hydroxyvitamin D3 and 1,25 dihydroxyvitamin D3 was assessed in organ culture. These metabolites were added to prelabeled chick embryo long-bone explants, and the amount of calcium-45 released into the medium after 24 or 48 h of hormone exposure was measured. For each time period a significant release of calcium-45 from hormone-treated bones was observed. The response to 25 hydroxyvitamin D3 and 1,25 dihydroxyvitamin D3 was always greater at 48 h and a clear dose-dependency was established at this time as well. 1,25 dihydroxyvitamin D3 was the more potent resorbing agent at all concentrations tested. The results from this study suggest that vitamin D metabolites may be involved in bone regulation in the chick embryo.  相似文献   

14.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) is a potent immunomodulatory seco-steroid. We have demonstrated that several components of vitamin D metabolism and signaling are strongly expressed in human uterine decidua from first trimester pregnancies, suggesting that locally produced 1,25(OH)(2)D(3) may exert immunosuppressive effects during early stages of gestation. To investigate this further, we used primary cultures of human decidual cells from first and third trimester pregnancies to demonstrate expression and activity of the enzyme that catalyzes synthesis of 1,25(OH)(2)D(3), 1alpha-hydroxylase (CYP27B1). Synthesis of 1,25(OH)(2)D(3) was higher in first trimester decidual cells (41 +/- 11.8 fmoles/h/mg protein) than in third trimester cells (8 +/- 4.4 fmoles/h/mg protein; P < 0.05). Purification of decidual cells followed by quantitative RT-PCR analysis showed that CYP27B1 was expressed by both CD10(+VE) stromal-enriched and CD10(-VE) stromal-depleted cells, with higher levels of mRNA in first trimester pregnancies. Expression of CYP27B1 correlated with TLR4 and IDO. Functional responses to 1,25(OH)(2)D(3) were studied using CD56(+VE) natural killer (NK) cells isolated from first trimester decidua. Decidual NK cells treated with 1,25(OH)(2)D(3) or precursor 25-hydroxyvitamin D(3) (25OHD(3)) for 28 h showed decreased synthesis of cytokines, such as granulocyte-macrophage colony stimulating factor 2 (CSF2), tumor necrosis factor, and interleukin 6, but increased expression of mRNA for the antimicrobial peptide cathelicidin antimicrobial peptide. These data indicate that human decidual cells are able to synthesize active 1,25(OH)(2)D(3), particularly in early gestation, and this may act in an autocrine/paracrine fashion to regulate both acquired and innate immune responses at the fetal-maternal interface.  相似文献   

15.
Serum 25-hydroxyvitamin D and immunoreactive parathyroid hormone concentrations were measured in normal elderly subjects living at home and in sick elderly patients in hospital. Normal old people tended to have high 25-hydroxyvitamin D and low parathyroid hormone concentrations; in the sick elderly this pattern was reversed. The raised serum parathyroid hormone concentrations in the sick elderly were not due to poor renal function and may have been a response to vitamin D deficiency. A high serum parathyroid hormone concentration in an elderly patient must be interpreted in the light of the patient''s general health and nutritional state. Caution is needed in diagnosing primary hyperparathyroidism in this age group.  相似文献   

16.
17.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

18.
Vitamin D binding protein (DBP) plays a key role in the bioavailability of active 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and its precursor 25-hydroxyvitamin D (25OHD), but accurate analysis of DBP-bound and free 25OHD and 1,25(OH)(2)D is difficult. To address this, two new mathematical models were developed to estimate: 1) serum levels of free 25OHD/1,25(OH)(2)D based on DBP concentration and genotype; 2) the impact of DBP on the biological activity of 25OHD/1,25(OH)(2)D in vivo. The initial extracellular steady state (eSS) model predicted that 50 nM 25OHD and 100 pM 1,25(OH)(2)D), <0.1% 25OHD and <1.5% 1,25(OH)(2)D are 'free' in vivo. However, for any given concentration of total 25OHD, levels of free 25OHD are higher for low affinity versus high affinity forms of DBP. The eSS model was then combined with an intracellular (iSS) model that incorporated conversion of 25OHD to 1,25(OH)(2)D via the enzyme CYP27B1, as well as binding of 1,25(OH)(2)D to the vitamin D receptor (VDR). The iSS model was optimized to 25OHD/1,25(OH)(2)D-mediated in vitro dose-responsive induction of the vitamin D target gene cathelicidin (CAMP) in human monocytes. The iSS model was then used to predict vitamin D activity in vivo (100% serum). The predicted induction of CAMP in vivo was minimal at basal settings but increased with enhanced expression of VDR (5-fold) and CYP27B1 (10-fold). Consistent with the eSS model, the iSS model predicted stronger responses to 25OHD for low affinity forms of DBP. Finally, the iSS model was used to compare the efficiency of endogenously synthesized versus exogenously added 1,25(OH)(2)D. Data strongly support the endogenous model as the most viable mode for CAMP induction by vitamin D in vivo. These novel mathematical models underline the importance of DBP as a determinant of vitamin D 'status' in vivo, with future implications for clinical studies of vitamin D status and supplementation.  相似文献   

19.
The chick kidney mitochondrial cytochrome P-450 1,25-dihydroxyvitamin D3 24-hydroxylase was partially purified by sequential polyethylene glycol precipitation, aminohexyl-Sepharose 4B, and hydroxylapatite chromatography. The specific activity of the final preparation, when reconstituted with NADPH, adrenodoxin, and adrenodoxin reductase, was 245 pmol/min/mg of protein or 0.56 pmol/min/pmol of P-450. The specific cytochrome P-450 content was 0.45-0.73 nmol/mg of protein. BALB/c mice immunized with this preparation developed serum polyclonal antibodies to the 24-hydroxylase, as demonstrated by immunoprecipitation. Splenic lymphocytes from an immunized mouse were fused with myeloma NSI/1-Ag-4-1 cells, and hybridomas secreting monoclonal antibodies to the 24-hydroxylase were detected by immunoprecipitation. The hybridoma lines were cloned by limiting dilution and further characterized as IgG1, IgG3, and IgM subclasses. In one-dimensional immunoblots of soluble 24-hydroxylase preparations, the monoclonal antibodies revealed a single band with an apparent molecular weight of 59,000. The monoclonal antibodies did not cross-react with cytochrome P-450s from other species but immunoprecipitated and immunoblotted a soluble chick renal mitochondrial 25-hydroxyvitamin D3 1 alpha-hydroxylase preparation, demonstrating the close similarity of these two hydroxylases. These antibodies were coupled to Sepharose CL-4B and used to isolate to homogeneity the two enzymes from chick kidney mitochondria. Amino-terminal sequences and amino acid composition data demonstrate that these enzymes are different but homologous.  相似文献   

20.
Ascorbic acid deficiency in vitamin D-supplied guinea pigs caused a moderate decrease of Ca in the blood and osseous tissue, a 1.5-fold decrease of 2.5-hydroxyvitamin D (25-OH D) in blood serum, a 2-fold decrease of the 25-OH D 1-hydroxylase activity in kidneys and a 1.6-fold increase of the 24-hydroxylase activity. The concentration of 1.25-dihydroxyvitamin D3 (1.25-(OH)2D3) nuclear receptors in small intestinal mucosa diminished by 20-30%; in this case the percentage of occupied hormone receptors reduced from 11.8 to 8.6%. The affinity of receptors for 1.25-(OH)2D3 did not change thereby (Kd = 0.25-0.26 nM; Kd2 = 0.06-0.10 nM). At the same time the value of cooperativity coefficient showed a decrease-from 1.7 to 1.4, which was accompanied by a reduction of the maximum capacity of receptors (1.2-1.5-fold). Vitamin C depletion augmented the manifestation of vitamin D deficiency in guinea pigs and impeded their correction after administration of cholecalciferol. This markedly retarded the restoration of the 25-OH D level in the blood as well as the number of occupied and unoccupied nuclear receptors for 1.25-(OH)2D3. The experimental results illustrate the effects of ascorbic acid on the vitamin D hormonal system function, which is manifested both at the level of 1.25-(OH)2D3 synthesis in the kidneys and of its receptor binding in target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号