首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunochemical properties and subunit structure of an antigen were characterized in autopsy specimens of human liver and brain, using antiserum against human phenylalanine hydroxylase. An identical antigen was revealed in extracts of organs by immunoelectrophoresis. Its content was 1.5-2.0 mg/g tissue in the liver and 20-40 micrograms/g tissue in the brain. One L enzyme subunit and two H subunits were identified in the liver extracts after two-dimensional electrophoresis followed by immunoblotting. Subunit structure of phenylalanine hydroxylase in the brain was similar to that in the liver. The molecular weight of L subunit was 55,000 and it was located in the same area as albumin isoforms. The molecular weight of H subunits was 57,000 and they differed from L subunits in pI. The antigen was purified from crude extracts of biopsy liver by affinity chromatography on immunoadsorbent to phenylalanine hydroxylase and showed phenylalanine hydroxylase activity. An antigen with similar molecular weight was also purified from the brain extract by the same method. These data suggest that phenylalanine hydroxylase can be present in the human brain.  相似文献   

2.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

3.
Phenylalanine hydroxylase, the enzyme that catalyzes the irreversible hydroxylation of phenylalanine to tyrosine, was purified from rat kidney with the use of phenyl-Sepharose, DEAE-Sephacel, and gel permeation high pressure liquid chromatography. Our most highly purified fractions had a specific activity in the presence of 6-methyltetrahydropterin, of 1.5 mumol of tyrosine formed/min/mg of protein, which is higher than has been reported hitherto. For the rat kidney enzyme, the ratio of specific activity in the presence of 6-methyltetrahydropterin to the specific activity in the presence of tetrahydrobiopterin (BH4) is 5. By contrast, this ratio for the unactivated rat liver hydroxylase is 80. These results indicate that the kidney enzyme is in a highly activated state. The rat kidney hydroxylase could not be further activated by any of the methods that stimulate the BH4-dependent activity of the rat liver enzyme. In addition, the kidney enzyme binds to phenyl-Sepharose without prior activation with phenylalanine. The phenylalanine saturation pattern with BH4 as a cofactor is hyperbolic with substrate inhibition at greater than 0.5 mM phenylalanine, a pattern that is characteristic of the activated liver hydroxylase. The molecular weight of the rat kidney enzyme as determined by gel permeation chromatography is 110,000, suggesting that the enzyme might be an activated dimer. We conclude, therefore, that phenylalanine hydroxylases from rat kidney and liver are in different states of activation and may be regulated in different ways.  相似文献   

4.
Tyrosine hydroxylase has been purified to homogeneity from cultured PC-12 cells. The protein migrates as a single band with a molecular weight of 60,000 on sodium dodecyl sulfate polyacrylamide electrophoresis. Two-dimensional electrophoresis of the pure enzyme resolves three spots (each with molecular weights of 60,000) with isoelectric points of 5.4, 5.8 and 5.9. This charge heterogeneity cannot be explained by the presence of sugar or lipid moieties on the enzyme. Amino acid analysis indicates a relatively high content of hydrophobic amino acids and a lower serine content than other preparations of tyrosine hydroxylase. The enzyme hydroxylates tryptophan at approximately 1% of its rate of tyrosine hydroxylation but will not catalyze the hydroxylation of phenylalanine. Polyclonal antibodies were produced in rabbits against pure tyrosine hydroxylase and were judged to be monospecific by Western blot analysis. The IgG fraction was isolated from serum, and when coupled to cyanogen bromide activated Sepharose, could be used to purify tyrosine hydroxylase from crude extracts in a single step. The antiserum proved to be very useful in immunoprecipitation and immunocytochemical experiments with tyrosine hydroxylase.  相似文献   

5.
Moderate doses of glucagon (20 g/kg I.V.) are sufficient to stimulate rat hepatic phenylalanine hydroxylase in vivo. In addition, the stimulation of the tetrahydrobiopterin-dependent phenylalanine hydroxylase activity in livers of animals fed on a high-protein diet has been correlated with an elevated phosphate content. The tetrahydrobiopterin-dependent hydroxylase activity in these animals can be further elevated by glucagon-stimulated phosphorylation. These results indicate that physiological changes in glucagon concentration modulate rat liver phenylalanine hydroxylase activity in vivo. The current understanding of the role of phosphorylation in regulating human phenylalanine hydroxylase is also considered.  相似文献   

6.
Phenylalanine hydroxylase activities in extracts of livers from rats pretreated with glucagon are higher than in controls. This time-dependent activation is seen when the hydroxylase is assayed in the presence of tetrahydrobiopterin, but not in the presence of 2-amino-4-hydroxy-6,7-dimethyltetrahydropterin. A maximum 4-fold stimulation of hydroxylase activity was correlated with a conversion of the multiple forms of the enzyme to a single form. This form is characterized by an increased extent of phosphorylation compared to the unactivated enzyme. Incorporation of radioactive inorganic phosphate into phenylalanine hydroxylase following administration of glucagon was determined after specific immunoprecipitation of the enzyme from partially purified preparations. Sodium dodecyl sulfate disc gel electrophoresis showed that stimulation of enzyme activity is accompanied by incorporation of 32Pi into the protein to the extent of 0.7 mol/mol of hydroxylase subunit. These results demonstrate the phosphorylation of hepatic phenylalanine hydroxylase in vivo and strongly support the idea that the activity of this enzyme can be hormonally regulated through a phosphorylation mechanism.  相似文献   

7.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

8.
Phenylalanine hydroxylase was purified from crude extracts of human livers which show enzyme activity by usine two different methods: (a) affinity chromatography and (b) immunoprecipitation with an antiserum against highly purified monkey liver phenylalanine hydroxylase. Purified human liver phenylalanine hydroxylase has an estimated mol. wt. of 275 000, and subunit mol. wts. of approx. 50 000 and 49 000. These two molecular-weight forms are designated H and L subunits. On two-dimensional polyacrylamide gel under dissociating conditions, enzyme purified by the two methods revealed at least six subunit species, which were resolved into two size classes. Two of these species have a molecular weight corresponding to that of the H subunit, whereas the other four have a molecular weight corresponding to that of the L subunit. This evidence indicates that active phenylalanine hydroxylase purified from human liver is composed of a mixture of sununits which are different in charge and size. None of the subunit species could be detected in crude extracts of livers from two patients with classical phenylketonuria by either the affinity or the immunoprecipitation method. However, they were present in liver from a patient with malignant hyperphenylalaninaemia with normal activity of dihydropteridine reductase.  相似文献   

9.
Continued high levels of phenylalanine hydroxylase in cultured H4-II-E-C3 rat hepatoma cells require either serum or glucocorticoids in the culture medium. Upon withdrawal of serum, cellular phenylalanine hydroxylase levels decay exponentially with a half-life of 22 hours for about 60 hours, after which time a low, constant enzyme content persists for at least 96 hours. This decline of phenylalanine hydroxylase is fully reversible; normal enzyme levels are restored in a time- and dosage-dependent fashion upon addition of serum to basal cultures. The serum factor is nondialyzable and moderately heat-stable. The stimulation by serum of the phenylalanine hydroxylas content of basal cultures is blocked by 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide and requires ongoing cellular protein synthesis. When added to the enzyme-assay mixture in vitro, serum does not alter the phenylalanine hydroxylase activity of extracts from basal cultures. Three lines of evidence suggest that serum contains a nonsteroidal phenylalanine hydroxylase stimulatory components(s): (a) glucocorticoid antagonists inhibit less than one-half of the biological activity of serum; (b) exhaustive extraction of endogenous serum glucocorticoids with charcoal reduces the activity of serum to about one-half of control values; and (c) the stimulatory effects of charcoal reduces the values; and (c) the stimulatory effects of charcoal-extracted serum and hydrocortisone are additive. The phenylalanine hydroxylase stimulatory activities of the charcoal-extracted sera from four mammalian species and from three stages in development in one mammalian species are comparable. A survey of partially purified preparations of a number of known hormones failed to reveal any one capable of elevating the phenylalanine hydroxylas levels of basal cultures in a manner comparable to that of charcoal-extracted serum.  相似文献   

10.
A full-length human phenylalanine hydroxylase cDNA has been recombined with a prokaryotic expression vector and introduced into Escherichia coli. Transformed bacteria express phenylalanine hydroxylase immunoreactive protein and pterin-dependent conversion of phenylalanine to tyrosine. Recombinant human phenylalanine hydroxylase produced in E. coli has been partially purified, and biochemical studies have been performed comparing the activity and kinetics of the recombinant enzyme with native phenylalanine hydroxylase from human liver. The optimal reaction conditions, kinetic constants, and sensitivity to inhibition by aromatic amino acids are the same for recombinant phenylalanine hydroxylase and native phenylalanine hydroxylase. These data indicate that the recombinant human phenylalanine hydroxylase is an authentic and complete phenylalanine hydroxylase enzyme and that the characteristic aspects of phenylalanine hydroxylase enzymatic activity are determined by a single gene product and can be constituted in the absence of any specific accessory functions of the eukaryotic cell. The availability of recombinant human phenylalanine hydroxylase produced in E. coli will expedite physical and chemical characterization of human phenylalanine hydroxylase which has been hindered in the past by inavailability of the native enzyme for study.  相似文献   

11.
Phenylalanine hydroxylase purified from rat liver shows positive co-operativity in response to variations in phenylalanine concentration when assayed with the naturally occurring cofactor tetrahydrobiopterin. In addition, preincubation of phenylalanine hydroxylase with phenylalanine results in a substantial activation of the tetrahydrobiopterin-dependent activity of the enzyme. The monoclonal antibody PH-1 binds to phenylalanine hydroxylase only after the enzyme has been preincubated with phenylalanine and is therefore assumed to recognize a conformational epitope associated with substrate-level activation of the hydroxylase. Under these conditions, PH-1 inhibits the activity of phenylalanine hydroxylase; however, at maximal binding of PH-1 the enzyme is still 2-3 fold activated relative to the native enzyme. The inhibition by PH-1 is non-competitive with respect to tetrahydropterin cofactor. This suggests that PH-1 does not bind to an epitope at the active site of the hydroxylase. Upon maximal binding of PH-1, the positive co-operativity normally expressed by phenylalanine hydroxylase with respect to variations in phenylalanine concentration is abolished. The monoclonal antibody may therefore interact with phenylalanine hydroxylase at or near the regulatory or activator-binding site for phenylalanine on the enzyme molecule.  相似文献   

12.
Rats were given intraperitoneal injections of 2 mCi of carrier-free 32Pi and substances known to activate liver phenylalanine hydroxylase. After 30 min, these animals were anesthetized and their livers removed for analysis of enzyme activity, 32Pi incorporation into immunoprecipitated phenylalanine hydroxylase and [gamma-32P]ATP specific activity. Following glucagon treatment, rat liver phenylalanine hydroxylase activity was stimulated more than 6-fold when assayed in the presence of the natural cofactor, tetrahydrobiopterin (BH4). Glucagon injection also resulted in an incorporation of 0.41 mol of 32Pi/mol of hydroxylase subunit (approximately 50,000 Da). In vivo stimulation of phenylalanine hydroxylase activity and 32Pi incorporation by glucagon had been previously observed in this laboratory (Donlon, J., and Kaufman, S. (1978) J. Biol. Chem. 253, 6657-6659). However, we show for the first time in the present study that in vivo treatment with phenylalanine alone results in a 4-fold increase in the BH4-dependent activity of phenylalanine hydroxylase concomitant with a significant incorporation of phosphate into phenylalanine hydroxylase (0.51 mol of 32Pi/mol of hydroxylase subunit). It is further demonstrated in vivo that the combined treatment with phenylalanine and glucagon results in a greater than 10-fold stimulation of BH4-dependent activity and the greatest level of 32Pi incorporation (0.75 mol of 32Pi/mol of hydroxylase subunit). Phenylalanine did not produce an elevation in plasma glucagon in these animals. A model is, thereby, proposed with respect to the ligand binding effects of phenylalanine on the state of phosphorylation and activation of phenylalanine hydroxylase. The significance of these regulatory roles are considered in light of the probable physiological environment of the enzyme.  相似文献   

13.
A pigmented subclone of Cloudman S91 melanoma cells, PS1-wild type, can grow in medium lacking tyrosine. This ability is conferred by phenylalanine hydroxylase activity, and not by tryptophan hydroxylase, tyrosine hydroxylase or tyrosinase activities, although the latter activity is also present in these cells. Conversion of phenylalanine to tyrosine was measured in living cells by chromatographic identification of the metabolites of [14C]phenylalanine and in cell extracts using a sensitive assay for phenylalanine hydroxylase. Phenylalanine hydroxylase activity in melanoma cell extracts was identified by its inhibition with p-chlorophenylalanine and not with 6-fluorotryptophan, 3-iodotyrosine, phenylthiourea, tyrosine or tryptophan; and by adsorption with antiserum prepared against purified rat liver phenylalanine hydroxylase, and migration of immunoprecipitable activity with authentic phenylalanine hydroxylase subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

14.
Phenylalanine is transported rapidly into, but is not concentrated by, liver cells. Glucagon increased flux through phenylalanine hydroxylase; a half-maximal response was obtained at 0.7 nM. Under control conditions, 0.2-0.3 mol of phosphate were incorporated per mol of subunit of the hydroxylase at steady state. Glucagon increased this incorporation of phosphate into the hydroxylase to a maximal value of approx. 0.6 mol of phosphate per subunit; a half-maximal response was obtained at 0.3 nM. Glucagon, added simultaneously with [32P]Pi to liver cells, inhibited incorporation of 32P into the enzyme. The effects of glucagon were reproduced with dibutyryl cyclic AMP. Changes in phosphorylation correlated closely with changes in flux through phenylalanine hydroxylase in cell incubations.  相似文献   

15.
A method was developed to study the unsupplemented phenylalanine hydroxylase system in rat liver slices. All of the components of the system--tetrahydrobiopterin, dihydropteridine reductase, and the hydroxylase itself--are present under conditions which should be representative of the actual physiological state of the animal. The properties of the system in liver slices have been compared to those of the purified enzyme in vitro. The three pterins, tetrahydrobiopterin, 6,7-dimethyltetrahydropterin, and 6-methyltetrahydropterin, all stimulate the hydroxylation of phenylalanine when added to the liver slice medium in the presence of a chemical reducing agent. The relative velocities found at 1 mM phenylalanine and saturating pterin concentrations are: tetrahydrobiopterin, 1; 6,7-dimethyltetrahydropterin, 2.5; 6-methyltetrahydropterin, 13. This ratio of activities is similar to that found for the purified, native phenylalanine hydroxylase and indicates that the enzyme in vivo is predominantly in the native form. Rats pretreated with 6-methyltetrahydropterin showed enhanced phenylalanine hydroxylase activity in liver slices demonstrating for the first time that an exogenous tetrahydropterin can interact with the phenylalanine hydroxylase system in vivo. This finding opens up the possibility of treating phenylketonurics who still possess some residual phenylalanine hydroxylase activity with a tetrahydropterin like 6-methyltetrahydropterin which can give a large increase in rate over that seen with the natural cofactor, tetrahydrobiopterin.  相似文献   

16.
经超声破碎、硫酸铵分级沉淀、凝胶过滤、磷酸钙胶层析和离子交换层析等步骤, 从Comamonas testosteroni菌株中获得了SDS-PAGE单一条带, 相对分子质量为62×103的间羟苯甲酸4-羟化酶比活提高21倍, 产率为30%.此酶为FAD加单氧酶, 催化间羟苯甲酸转变为3,4二羟苯甲酸.  相似文献   

17.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

18.
Two-dimensional polyacrylamide gel analyses of purified human and monkey liver phenylalanine hydroxylase reveal that the enzyme consists of two different apparent molecular weight forms of polypeptide, designated H (Mr = 50,000) and L (Mr = 49,000), each containing three isoelectric forms. The two apparent molecular weight forms, H and L, represent the phosphorylated and dephosphorylated forms of phenylalanine hydroxylase, respectively. After incubation of purified human and monkey liver enzyme with purified cAMP-dependent protein kinase and [gamma-32P]ATP, only the H forms contained 32P. Treatment with alkaline phosphatase converted the phenylalanine hydroxylase H forms to the L forms. The L forms but not the H forms could be phosphorylated on nitrocellulose paper after electrophoretic transfer from two-dimensional gels. Phosphorylation and dephosphorylation of human liver phenylalanine hydroxylase is not accompanied by significant changes in tetrahydrobiopterin-dependent enzyme activity. Peptide mapping and acid hydrolysis confirm that the apparent molecular weight heterogeneity (and charge shift to a more acidic pI) in human and monkey liver enzyme results from phosphorylation of a single serine residue. However, phosphorylation by the catalytic subunit of cAMP-dependent protein kinase does not account for the multiple charge heterogeneity of human and monkey liver phenylalanine hydroxylase.  相似文献   

19.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

20.
Phenylalanine hydroxylase was prepared from human foetal liver and purified 800-fold; it appeared to be essentially pure. The phenylalanine hydroxylase activity of the liver was confined to a single protein of mol.wt. approx. 108000, but omission of a preliminary filtration step resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. Human adult and full-term infant liver also contained a single phenylalanine hydroxylase with molecular weights and kinetic parameters the same as those of the foetal enzyme; foetal, newborn and adult phenylalanine hydroxylase are probably identical. The K(m) values for phenylalanine and cofactor were respectively one-quarter and twice those found for rat liver phenylalanine hydroxylase. As with the rat enzyme, human phenylalanine hydroxylase acted also on p-fluorophenylalanine, which was inhibitory at high concentrations, and p-chlorophenylalanine acted as an inhibitor competing with phenylalanine. Iron-chelating and copper-chelating agents inhibited human phenylalanine hydroxylase. Thiol-binding reagents inhibited the enzyme but, as with the rat enzyme, phenylalanine both stabilized the human enzyme and offered some protection against these inhibitors. It is hoped that isolation of the normal enzyme will further the study of phenylketonuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号