首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+ levels in resting human lymphocytes obtained from 20 donors were found to be 69.9 ± 21.7 pmols/106 cells. After 3 days of phytohemagglutinin (PHA) stimulation the NAD+ levels rose to 452 ± 198 pmols/106 cells. NADH, NADP+ and NADPH also increased in mitogen-stimulated lymphocytes, but the major portion of the increase in total pyridine nucleotide pools was accounted for by the increase in NAD+. When PHA-stimulated lymphocytes were incubated in nicotinamide-deficient growth medium, there was no significant increase in their total pyridine nucleotide pools; however, the ratios of oxidized to reduced pyridine nucleotides changed in a similar fashion to cells grown in medium containing nicotinamide. When lymphocytes in nicotinamide-deficient medium were stimulated with PHA they increased their levels of DNA synthesis and cell replication in a similar fashion to cells growing in nicotinamide-supplemented media. Human lymphocytes were able to synthesize pyridine nucleotides from nicotinamide or nicotinic acid; however, in the absence of a preformed pyridine ring they did not efficiently use tryptophan for the synthesis of NAD. Uptake of [carbonyl-14C]nicotinamide and conversion to NAD was markedly increased in PHA-stimulated lymphocytes; these cells also showed a marked increase in activity of the enzyme adenosine-triphosphate-nicotinamide mononucleotide (ATP-NMN) adenylyl transferase.  相似文献   

2.
Carbohydrate metabolism in transforming lymphocytes from the aged   总被引:1,自引:0,他引:1  
There is an age-related decline in immune capacity which has been linked to a decreased response of lymphocytes to mitogens in vitro. During transformation, lymphocytes require a marked increase in energy production and biosynthesis which is supplied primarily by glycolysis. In the elderly, the glycolytic enzymes increase significantly in transforming lymphocytes at least 24 hr later than in the young and then at significantly reduced levels. Glucose utilization is also impaired in stimulated lymphocytes from the elderly but follows the impairment of glycolysis. In stimulated cells from the young, increases in glycolytic enzyme activity levels accompany sharp increases in blastogenesis while a delayed increase in glycolytic enzyme activity in the elderly is accompanied by a delay in blastogenesis. Maximal glycolytic enzyme activity levels are significantly reduced in transformed lymphocytes from the elderly though the number of transformed cells is also significantly reduced. However, glycolytic enzyme activity levels are significantly lower in the elderly than in the young even on a per transformed cell basis. Thus, this reduction cannot be attributed to the lower number of transformed cells that are present in the elderly. This defect in the increase of glycolysis in stimulated cells from the elderly suggests an intracellular mechanism which could be related to the impaired lymphocyte stimulation in vitro in the aged.  相似文献   

3.
Cellular adenine and pyridine nucleotides play important roles in the cellular energy and redox state. An imbalance in the cellular levels of these tightly regulated energy related nucleotides can lead to oxidative stress and thus is discussed to contribute to neurotoxic and carcinogenic processes. Here we established a reliable ion-pair reversed phase HPLC based method for the parallel quantification of six energy related nucleotides (ATP, ADP, ADP-ribose, AMP, NAD(+), NADH) in cells and subsequently applied it to determine effects of manganese and arsenic species in cultured human cells. In human lung cells, MnCl(2) (≥50 μM) decreased the levels of ATP, NAD(+) and NADH as well as the NAD(+)/NADH ratio. This reflects a decline in the cellular energy metabolism, most likely resulting from a disturbance of the mitochondrial function. In contrast, cultured astrocytes were more resistant towards manganese. Regarding the arsenicals, a disturbance of the cellular energy related nucleotides was detected in lung cells for arsenite (≥50 μM), monomethylarsonous (≥1 μM), dimethylarsinous (≥1 μM) and dimethylarsinic acid (≥100 μM). Thereby, the single arsenicals seem to disturb the cellular energy and redox state by different mechanisms. Taken together, this study provides further evidence that cellular energy related nucleotides serve as sensitive indicators for toxic species exposure. When searching for a molecular mechanism of toxic compounds, the data illustrate the necessity of quantifying several energy related nucleotides in parallel, especially since ATP depletion, redox state alterations and oxidative stress are known to potentiate each other.  相似文献   

4.
The differential metabolic effects of three nicotinamide analogs, 6-aminonicotinamide, 3-aminobenzamide, and 5-methylnicotinamide, were analyzed in mitogen-stimulated preparations of human T lymphocytes. Mitogen stimulation with the phorbol ester TPA and a monoclonal antibody to the T3 cell surface antigen caused an increase in cellular NAD and ATP levels and a marked increase in glucose metabolism as demonstrated by an increase in cellular levels of glucose 6-phosphate and a sevenfold increase in radioactive CO2 formation from [l-14C]glucose. 6-Aminonicotinamide had drastic inhibitory effects on the mitogen-stimulated increases in NAD and ATP levels as well as on the metabolism of glucose. Treatment of the mitogen-stimulated cells with 6-aminonicotinamide also caused a marked increase in cellular levels of 6-phosphogluconate, suggesting inhibition of the hexose monophosphate shunt at 6-phosphogluconate dehydrogenase. Radioactive CO2 formation from [6-14C]glucose showed that metabolism through the tricarboxylic acid cycle was not used to compensate for the inhibition of the hexose monophosphate shunt pathway. Treatment of cells with 3-aminobenzamide had the opposite effect of 6-aminonicotinamide in that cellular NAD levels increased, presumable due to inhibition of poly(ADP-ribose) polymerase. 3-Aminobenzamide did not interfere with ATP or glucose 6-phosphate levels and did not cause significant elevations of 6-phosphogluconate. Thus, 6-aminonicotinamide appears to have direct inhibitory effects on the synthesis of both pyridine nucleotides and poly(ADP-ribose), whereas 3-aminobenzamide has its major inhibitory effect on poly(ADP-ribose) synthesis. 5-Methylnicotinamide also interferes with the mitogen-stimulated increase in NAD levels but not as effectively as 6-aminonicotinamide. The alterations in pyridine nucleotide metabolism resulting from treatment with these nicotinamide analogs can produce drastic and diverse alterations in pathways of glucose utilization and energy generation.  相似文献   

5.
Niacin (vitamin B(3)), in the form of NADPH, is required for the regeneration of glutathione (GSH), which is the substrate of GSH peroxidase. In this study, we examined the effect of dietary niacin deficiency on protein and DNA oxidation in bone marrow cells of Long-Evans rats. Western blotting was used to measure 2,4-dinitrophenylhydrazine-reactive protein carbonyl products, and the Biotrin OxyDNA method was used to measure 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). The levels of both protein carbonyls and 8-oxodG were increased by 50% in niacin-deficient bone marrow cells. To examine whether this oxidant damage involves altered metabolism of pyridine nucleotides and glutathione, both oxidized and reduced forms of pyridine nucleotides (NAD(+), NADH, NADP(+), NADPH) and glutathione (GSSG and GSH) were quantified in total and nucleated bone marrow cells. NAD and NADP(+) levels were decreased 80% and 22%, respectively, by niacin deficiency. NADPH and GSH were not depleted by niacin deficiency, showing that oxidant injury was not due directly to impairment of this pathway. Oxidative stress, of uncertain etiology, may play a role in the observed genomic instability and sensitivity to leukemogenesis in bone marrow cells during niacin deficiency.  相似文献   

6.
The effect of hemorrhagic shock, hypoxemia, and anoxia on the levels of adenine and pyridine nucleotides of liver and kidney was assessed. ATP levels in liver and kidney of animals in shock or animals subjected to 7 min of anoxia decreased by 85 and 73%, respectively. Under hypoxic conditions (arterial PO2 AT 18 MMHg), the decrease was only 62 and 48% in liver and kidney, respectively. Tissue NAD levels decreased and NADH levels increased during shock but were found to be essentially unaltered during experimental hypoxemia. Thus, shock produced greater alterations in adenine and pyridine nucleotides than did hypoxemia alone, indicating that stagnant hypoxemia due to shock is more deleterious to energy metabolism than is severe hypoxemia with an otherwise normal circulation. The results also suggest that if an anterial PO2 OF 18 MMHg represents the initial stages of tissue hypoxia, then tissue ATP levels are a more sensitive indicator of this than NAD levels.  相似文献   

7.
Brain levels of NADH and NAD+ were measured in three models of cerebral ischemia to determine whether degradation of the pyridine nucleotides is enhanced in models that generate high concentrations of lactic acid. Complete ischemia (decapitation), in which lactate increased to 14 mmol/kg, caused a gradual decrease in the NAD pool to 50% of control by 2 h. During focal ischemia (occlusion of the middle cerebral artery), the decrease in the NAD pool was less pronounced (82% of control at 2 h) despite the accentuated accumulation of lactate to 33 mmol/kg. In a third model (unilateral hypoxia-ischemia), pretreatment of animals with glucose augmented the ischemic elevation of lactate from 30 mmol/kg to 40 mmol/kg and greatly impaired restoration of energy metabolites during recirculation. However, glucose pretreatment had no effect on the size of the NAD pool during ischemia or early recovery. These results, therefore, demonstrate that the pyridine nucleotide pool is not rapidly degraded during ischemic insults that accumulate high concentrations of lactic acid. The stability of the NAD pool may have been enhanced by the limited increase in brain levels of NADH that occurred in these models of incomplete ischemia.  相似文献   

8.
The rate of oxygen consumption increased in maturing Xenopus oocytes within 2 hr after progesterone addition, well before GVBD. This suggested an early requirement for energy metabolism during maturation, similar to the situation in sea urchin eggs during fertilization. Yet, the absence of similar increases in glucose-6-phosphate levels, glucose-6-phosphate dehydrogenase activity, glucose conversion to CO2, and the conversion of NAD(H) to NADP(H), indicated that carbohydrate metabolism was not being stimulated in Xenopus oocytes during maturation. The oxidation of other energy yielding substrates is discussed which might account for the finding that, within 5 min of progesterone addition, both reduced forms of the pyridine nucleotides increased 20% over control levels. This was later followed by a drop in NADH levels and a rise in NAD relative to controls. The significance of these changes in pyridine nucleotide levels and their relationship to a number of maturation events are discussed.  相似文献   

9.
Enzymatic regulation of pyricline nucleotide formation, under symbiotic and non-symbiotic conditions, was analyzed using soybeans (Glycine max L. cv. 'Akisengoku') and rhizobia (Bradyrhizobia japonicum strain A1017), respectively. It was found that levels of pyridine nucleotides in bacteroids in root nodules were different from those in free-living cells of rhizobia. This difference was associated with differences in activities of enzymes involved in the pathway from L-tryptophan to NAD and NADP. That is, these activities were lower in bacteroids than in free-living bacteria and lower in the nodule cytosol than in root extracts. The optimum pH for NAD synthetase in bacteroids, was 9.0. Additionally, the optimum pH for ATP-nicotinamide mononucleotide (NMN) adenyltransferase, final step enzyme in NAD formation, was estimated to be 7.6. In the bacteroid fraction, the K(m) of NAD synthetase (22 microM) was approximately 1/22 of that of ATP-NMN adenyltransferase (482 microM). Vmax values were estimated to be almost in the same order for both NAD synthetase and ATP-NMN adenyltransferase. This is the first report on the formation of pyridine nucleotides originating from L-tryptophan in bacteroids in soybean nodules and free-living bacteria.  相似文献   

10.
Anticancer immunotherapy with cytokines is often limited by the occurrence of severe toxicity, particularly in older age groups, which are characterized by a reduced tolerance to antineoplastic therapies. We, and others, have recently demonstrated the efficacy of pulsing procedures with IL-2 as a new therapeutic strategy to induce antitumor cytotoxic cells. The aim of this paper was to evaluate the effect of IL-12 on NK cell activity in young and old mice and to investigate the possibility of inducing NK cytotoxicity and perforin and granzyme B gene expression through a brief exposure of spleen lymphocytes from young and old mice to IL-12. Pulsed lymphocytes were compared with non-pulsed cells cultured continuously in IL-12. IL-12 was able to boost both endogenous and IL-2-induced NK cell activity in young and old mice; the levels of cytotoxicity were lower in old than in young animals although the relative increase of IL-12 plus IL-2 versus IL-2 alone was greater for old mice. Comparable levels of NK cell activity were obtained in pulsed (5 min-1 hour) and non-pulsed lymphocytes from both young and old mice after one or three days of culture. The efficacy of the pulsing procedure was evident in both endogenous and IL-2-induced NK cytotoxicity. The mRNA encoding perforin and granzyme B were markedly and similarly enhanced in both IL-12-pulsed and non-pulsed lymphocytes in comparison with control cells. The results demonstrate the effectiveness of IL-12 pulsing in inducing antitumor cytotoxic cells, suggesting the possibility of using IL-12 pulsing, alone or in combination with IL-2, in the immunotherapy of both young and old subjects.  相似文献   

11.
Coenzyme fluorescence spectra of single living cells are due to free pyridine nucleotides (folded configuration), bound pyridine nucleotides (unfolded configuration) and a third component, possibly a mixture or flavins. Such spectra can be used to recognize possible differences in coenzyme composition between cell lines or changes of metabolic pathways due to chemicals acting at levels below or above cytotoxicity, by high resolution spectrofluorometry. A study of spectra recorded from cultured Ehrlich ascites (EL2), and Harding Passey melanoma cells (HPM-67 and HPM-73 line) grown under comparable conditions, shows that free NAD(P)H predominates in HPM-67 and EL2, while this coenzyme is bound in HPM-73. The free/bound ratio may be profoundly modifed by chemicals, e.g. in the HPM-73 increase of free and decrease of bound NAD(P)H occurred upon treatment with 10(-6) oligomycin. When atebrine at levels (10(-6) M) below cytotoxicity was added, there was a decrease of the free NAD(P)H spectrum possibly through energy transfer from NAD(P)H to atebrine. Consideration of long range energy transfer i.e., excitation of atebrine by fluorescence of NAD(P)H vs. short range transfer of excitation energy from free NAD(P)H to atebrine, favors the latter mechanism. A transient (reversible) increase in atebrine fluorescence is seen following intracellular microinjection of substrate (e.g. glucose-6-P) leading to an increase in free NAD(P)H. At cytotoxic levels of atebrine (e.g 2 x 10(-5) M) an irreversible increase of atebrine fluorescence is seen. The microspectrofluorometric technique appears therefore well suited to study physiological processes at the level of intracellular coenzymes, as well as possible processes of intermolecular energy transfer in the microenvironment.  相似文献   

12.
Summary Coenzyme fluorescence spectra of single living cells are due to free pyridine nucleotides (folded configuration), bound pyridine nucleotides (unfolded configuration) and a third component, possibly a mixture of flavins. Such spectra can be used to recognize possible differences in coenzyme composition between cell lines or changes of metabolic pathways due to chemicals acting at levels below or above cytotoxicity, by high resolution spectrofluorometry.A study of spectra recorded from cultured Ehrlich ascites (EL2), and Harding Passey melanom a cells (HPM-67 and HPM-73 line) grown under comparable conditions, shows that free NAD(P)H predominates in HPM-67 and EL2, while this coenzyme is bound in HPM-73. The free/bound ratio may be profoundly modified by chemicals, e.g. in the HPM-73 increase of free and decrease of bound NAD(P)H occurred upon treatment with 10–6 oligomycin.When atebrine at levels (10–6 M) below cytotoxicity was added, there was a decrease of the free NAD(P)H spectrum possibly through energy transfer from NAD(P)H to atebrine. Consideration of long range energy transfer i.e., excitation of atebrine by fluorescence of NAD(P)H vs. short range transfer of excitation energy from free NAD(P)H to atebrine, favors the latter mechanism. A transient (reversible) increase in atebrine fluorescence is seen following intracellular microinjection of substrate (e.g. glucose-6-P) leading to an increase in free NAD(P)H. At cytotoxic levels of atebrine (e.g. 2×10–5 M) an irreversible increase of atebrine fluorescence is seen.The microspectrofluorometric technique appears therefore well suited to study physiological processes at the level of intracellular coenzymes, as well as possible processes of intermolecular energy transfer in the microenvironment.  相似文献   

13.
A variety of biologically important pyridine nucleotides and precursors were examined for their capacities to serve as substrates for the synthesis of NAD by cell fractions derived from Haemophilus parasuis and H. pleuropneumoniae. Of the compounds tested, only NMN and nicotinamide riboside were converted to NAD. These reactions required ATP as co-substrate, and fractions from both organisms could also catalyze the ATP-dependent synthesis of NADP from NAD. In the absence of ATP, and depending on the pyridine compound under study, NAD, NMN, nicotinamide riboside, and also nicotinamide, were detected as products of catabolism. It is concluded that these haemophili possess either three-membered pyridine nucleotide cycles or two-membered cycles with synthetic branches originating with nicotinamide riboside. It is also possible that the pyridine nucleotide cycles of both organisms have nonrecycling branches resulting in the "waste" of usable pyridine compound in the form of nicotinamide.  相似文献   

14.
Several methods are available for the extraction and quantitation of oxidized and reduced pyridine nucleotides in erythrocytes. Enzymatic methods, however, are complicated by the presence of hemoglobin, which causes oxidation of NADH and NADPH during extraction. Although hemoglobin-mediated oxidation can be prevented by the addition of reducing agents, these interfere with spectrophotometric cycling assays for these nucleotides. Therefore, we have developed a method for determining oxidized and reduced NAD and NADP in human erythrocytes using a single extract. Our extraction method eliminates the need for reducing agents and thus allows the use of a spectrophotometric cycling assay. Using this method, we obtained full recovery of all added nucleotides with both normal and reticulocyte-enriched red blood cells. Our method is suitable for the determination of NAD+, NADH, NADP+, and NADPH in normal human erythrocytes and in red cells from patients with hemolytic anemia with a higher proportion of reticulocytes.  相似文献   

15.
The effect of the in vitro exposure to extremely low frequency pulsed electromagnetic fields (PEMFs) on the proliferation of human lymphocytes from 24 young and 24 old subjects was studied. The exposure to PEMFs during a 3-days culture period or during the first 24 hours was able to increase phytohaemagglutinin-induced lymphocyte proliferation in both groups. Such effect was greater in lymphocytes from old people which showed a markedly reduced proliferative capability and, after PEMF exposure, reached values of 3H-TdR incorporation similar to those of young subjects. The relevance of these data for the understanding and the reversibility of the proliferative defects in cells from aged subjects and for the assessment of risk related to the environmental exposure to PEMFs has to be considered.  相似文献   

16.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is activated in response to genotoxic insults by binding damaged DNA and attaching polymers of ADP-ribose to nuclear proteins at the expense of its substrate NAD+. In persons affected with ataxia telangiectasia (A-T), associated mutations in the ataxia telangiectasia mutated gene render cells unable to cope with the genotoxic stresses from ionizing radiation and oxidative damage, thus resulting in a higher concentration of unrepaired DNA damage and the activation of PARP in an uncontrolled manner. In primary A-T fibroblasts, we observed a 58-96% increase in PARP activity and a concomitant loss of cellular NAD+ and ATP content. PARP protein by Western blot analysis increased only slightly in these cells, supporting the observation that the steady state levels of DNA damage is higher in A-T cells than in normals. When treated with PARP inhibitors 3-aminobenzamide or 1,5-dihydroisoquinoline, cellular growth rates reached those observed in normal fibroblast cultures. The improvement of cellular growth and NAD+ levels in A-T cells with PARP inhibition suggests that the cellular metabolic status of A-T cells is compromised and the inhibition of PARP may relieve some of the drain on cellular pyridine nucleotides and ATP. Thus, therapy utilizing PARP inhibitors may provide a benefit for individuals affected with A-T.  相似文献   

17.
Poliovirus replication has been studied in human lymphocytes during the course of blastogenesis under phytohemagglutinin (PHA) stimulation. Enhancement of virus replication in PHA-stimulated leukocyte cultures was due to an increase in number of virus-producing cells. Virus yield was approximately 10 plaque-forming units (PFU) per producing cell, both in stimulated and in nonstimulated cultures. Adsorption and penetration studies showed that freshly drawn lymphocytes (unlike other leukocytes) were resistant to virus infection, but they became susceptible to the virus during PHA stimulation. Also, the eclipse of the virus after penetration was enhanced during blastogenesis of the lymphocytes. Our findings suggested that the monocytes in the leukocyte cultures were infected initially. In PHA-stimulated cultures, the virus then spread to lymphocytes which became susceptible to virus infection during blastogenesis. Polymorphonuclear cells died within 24 to 48 hr after initiation of the cultures and apparently could not support poliovirus replication.  相似文献   

18.
The rate of turnover of nicotinamide adenine dinucleotide (NAD) in the human cell line, D98/AH2, has been estimated by measuring the rates of entry into and exit from NAD molecules of 14C-adenine. In one set of experiments, cells were labeled by growth in medium containing 14C-adenine for six hours and then shifted to medium without labeled adenine. The loss of 14C-adenine from the adenine nucleotide and pyridine nucleotide pools was measured, and the data were analyzed using an analytical treatment which corrects for the relatively slow turnover of precursor pools. The loss of 14C-adenine from the NAD pool and from the precursor ATP pool could be related to the absolute rate of NAD breakdown. Under the experimental conditions used, the rate of NAD turnover ranged from 83,000 to 126,000 molecules per second per cell. In a complementary experiment cells were grown in the presence of unlabeled adenine, then shifted into medium containing 14C-adenine and the rate of entry of 14C-adenine into adenine and pyridine nucleotides was measured. The data were treated using a similar analysis to relate the rate of entry of 14C-adenine into NAD and the precursor ATP pools to the absolute turnover rate of NAD. This analysis gave a value for NAD turnover of 78,000 molecules per second per cell in excellent agreement with results from the pulse-chase experiments. The results from both types of experiment indicate that within D98/AH2 cells the half-life of an intact NAD molecule is 60 +/- 18 minutes. Thus, in a human D98/AH2 cell growing with a generation time of 24 hours, NAD is turning over at twice the rate found in Escherichia coli with a generation time of half an hour.  相似文献   

19.
Quantitative analysis of red cell pyridine nucleotides has been unreliable in the past because of technical problems in extracting them in the presence of hemoglobin. A simple alcoholic extraction procedure for analysis of pyridine nucleotides in red blood cells is described in this paper. Pyridine nucleotides extracted in the presence of hemoglobin in solution show recoveries of NADH, NAD, and NADP averaging over 70%, while recoveries of NADPH were about 60%. In order to show that these techniques could detect actual intracellular differences in nucleotides inside red cells, two experiments were performed in which the ratios of the nucleotides would be predictably altered. Intact cells incubated in the presence of methylene blue show a decrease in the NADPHNADP ratio, and intact cells incubated in the presence of hydrazine and lactate show an increase in the NADHNAD ratio. The changes in pyridine nucleotide ratios in these experiments are in the expected direction and were easily detected. Levels of pyridine nucleotides in red blood cells of normal human adults are also presented.  相似文献   

20.
The oxaloacetate (OAA) decarboxylase (EC 4.1.1.3) activity of Acetobacter xylinum cells grown on glucose or glycerol is the same as that of cells grown on intermediates of the citrate cycle. The enzyme was purified 92-fold from extracts, and its molecular weight was determined to be 100,000 by gel filtration. Initial velocity studies revealed marked positive cooperativity for OAA (Hill coefficient [n(H)] = 1.8; S(0.5) = 21 mM). The affinity of the enzyme for OAA was markedly increased upon addition of nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), and some other pyridine nucleotides. S(0.5(OAA)) decreased to 1 mM but n(H) and V(max) were unchanged. Saturation kinetics for the pyridine nucleotides were hyperbolic, and a half-maximal effect was obtained with 8 muM NAD and 30 muM NADP. The enzyme also catalyzed the exchange of (14)CO(2) into OAA but not the net carboxylation of pyruvate. Exchange activity, too, exhibited sigmoidal kinetics for OAA and was strongly stimulated by NAD at low substrate concentrations. The enzyme was inhibited by acetate competitively with respect to OAA. The K(I) for acetate (12 mM) was well within the physiological range of this compound inside the cell. The regulatory properties of the decarboxylase with respect to OAA cooperativity, NAD activation, and acetate inhibition were retained in situ within permeabilized cells. These properties seem to provide for a control mechanism which could insure the maintenance of OAA and the citrate cycle during growth of cells on glucose and, conversely, the required supply of pyruvate during growth on intermediates of the citrate cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号