共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat protein synthesis elongation factor 1 was tested for binding to GTP analogs, including structures resembling “caps” that are present at the 5′-termini of most eukaryotic mRNAs. The interaction was assayed by determining the capacity of the analogs to inhibit the binding of [3H]GTP to elongation factor 1. Significant interaction of elongation factor 1 with G(5′)ppp(5′)G, G(5′)pppp(5′)G, and G(5′)ppp(5′)A was observed. Methylation of a ribose 2′-hydroxyl had very little effect, but methylation of the 7 position of guanosine greatly diminished the affinity of elongation factor 1 for these compounds. m7G(5′)ppp(5′)Cm, m7G(5′)ppp(5′)Um, and m7G(5′)ppp(5′)Am gave no detectable binding with EF1. 相似文献
2.
Interaction of rabbit reticulocyte elongation factor 1 with guanosine-triphosphate and aminoacyl-transfer ribonucleic acid 总被引:1,自引:0,他引:1
J M Ravel R C Dawkins S Lax O W Odom B Hardesty 《Archives of biochemistry and biophysics》1973,155(2):332-341
Elongation Factor 1 (EF-1) from rabbit reticulocytes interacts with GTP to form a complex that is retained on a nitrocellulose filter. EF-1 also interacts with GDP; however, the concentration of GDP required for maximal complex formation is higher than the concentration of GTP required and the extent of binding is lower. Interaction of EF-1 with GTP in the presence of various aminoacyl-tRNAs from rabbit liver or E. coli results in a 50–75% decrease in the amount of GTP complex retained on a filter. No reduction in the amount of GTP complex retained is observed with deacylated tRNA or with N-acetylphenylalanyl-tRNA. EF-1 is inactivated by heating at 37 °C in the presence of GTP. Aminoacyl-tRNA protects EF-1 from the inactivation observed in the presence of GTP. These data indicate that an interaction of reticulocyte EF-1 with GTP and aminoacyl-tRNA occurs; however, attempts to demonstrate the formation of a stable ternary complex by chromatography on Sephadex G-150 were unsuccessful. Also, no difference is observed between the rate of binding of aminoacyl-tRNA to reticulocyte ribosomes obtained with EF-1 and the rate obtained with EF-1 that had been incubated previously with GTP and aminoacyltRNA. 相似文献
3.
Sajid A Arora G Gupta M Singhal A Chakraborty K Nandicoori VK Singh Y 《Journal of bacteriology》2011,193(19):5347-5358
During protein synthesis, translation elongation factor Tu (Ef-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. The activity of Ef-Tu is dependent on its interaction with GTP. Posttranslational modifications, such as phosphorylation, are known to regulate the activity of Ef-Tu in several prokaryotes. Although a study of the Mycobacterium tuberculosis phosphoproteome showed Ef-Tu to be phosphorylated, the role of phosphorylation in the regulation of Ef-Tu has not been studied. In this report, we show that phosphorylation of M. tuberculosis Ef-Tu (MtbEf-Tu) by PknB reduced its interaction with GTP, suggesting a concomitant reduction in the level of protein synthesis. Overexpression of PknB in Mycobacterium smegmatis indeed reduced the level of protein synthesis. MtbEf-Tu was found to be phosphorylated by PknB on multiple sites, including Thr118, which is required for optimal activity of the protein. We found that kirromycin, an Ef-Tu-specific antibiotic, had a significant effect on the nucleotide binding of unphosphorylated MtbEf-Tu but not on the phosphorylated protein. Our results show that the modulation of the MtbEf-Tu-GTP interaction by phosphorylation can have an impact on cellular protein synthesis and growth. These results also suggest that phosphorylation can change the sensitivity of the protein to the specific inhibitors. Thus, the efficacy of an inhibitor can also depend on the posttranslational modification(s) of the target and should be considered during the development of the molecule. 相似文献
4.
W M Kemper W C Merrick B Redfield C K Liu H Weissbach 《Archives of biochemistry and biophysics》1976,174(2):603-612
Elongation factor 1 has been purified about 100-fold from the lysate of rabbit reticulocytes. The native enzyme is highly asymmetric () and has a molecular weight of 450,000. Polyacrylamide-gel electrophoresis in sodium dodecyl sulfate shows two major bands with molecular weights of about 53,000 and 50,000. Partially purified phospholipase C and AB preparations and elastase cause dissociation of the aggregate form of the enzyme to an active form which has a molecular weight of about 50,000. The effect of these phospholipase preparations is unexplained since rabbit reticulocyte elongation factor 1 contains little or no phospholipid. A protease contamination has been considered but no evidence of protease activity has been detected in the phospholipase preparations. In aminoacyl-tRNA binding, elongation factor 1 appears to show very little, if any, turnover. However, in the presence of elongation factor 2, under conditions where polymerization occurs, elongation factor 1 functions catalytically. 相似文献
5.
Elongation factor G (EF-G) is a G protein factor that catalyzes the translocation step in protein synthesis on the ribosome. Its GTP conformation in the absence of the ribosome is currently unknown. We present the structure of a mutant EF-G (T84A) in complex with the non-hydrolysable GTP analogue GDPNP. The crystal structure provides a first insight into conformational changes induced in EF-G by GTP. Comparison of this structure with that of EF-G in complex with GDP suggests that the GTP and GDP conformations in solution are very similar and that the major contribution to the active GTPase conformation, which is quite different, therefore comes from its interaction with the ribosome. 相似文献
6.
L I Slobin 《European journal of biochemistry》1979,96(2):287-293
Elongation factor 1 (EF-1) was purified from rabbit reticulocytes and found to contain at least two distinct polypeptides: one of Mr 53 000 and one of Mr 30 000. The 30 000-Mr polypeptide was purified from EF-1 by treatment of the factor with 5.4 M guanidine . HCl and subsequent chromatography on DEAE-BioGel A in the presence of 5 M urea. By a number of functional criteria, the 30 000-Mr polypeptide was found to be the eucaryotic elongation factor Ts (eEF-Ts). These criteria include the ability of the polypeptide to stimulate Artemia salina eEF-Tu-dependent binding of aminoacyl-tRNA to 80-S ribosomes as well as eEF-Tu + EF-2-dependent polyphenylalanine synthesis. The reticulocyte factor also markedly increased the rate of exchange of eEF-Tu . gdp complexes with free GTP. Furthermore, rabbit antibodies to EF-1 from A. salina which was previously shown to contain eEF-Ts [Slobin, L. I. and M?ller, W. (1978) Eur. J. Biochem. 84, 69--77] were found to cross-react with reticulocyte eEF-Ts, suggesting extensive structural homology between brine shrimp and rabbit eEF-Ts. The demonstration that eEF-Ts is and integral component of EF-1 from such diverse sources as brine shrimp and rabbit reticulocytes supports the conclusion that the factor is universally present in eucaryotic EF-1. 相似文献
7.
A fluorescent derivative of GDP was prepared by the reaction of 2'-amino-2'-deoxy-GDP with fluorescamine. This derivative binds tightly (KD approximately 4.5 X 10(-8) M) to elongation factor Tu (EF-Tu) from Escherichia coli. The emission properties, including spectra, polarizations, and lifetimes, for fluorescamine-GDP free in solution and bound to EF-Tu are presented. Emission data on the fluorescamine-ethylamine conjugate are also given. A multifrequency phase and modulation lifetime study (using nine modulation frequencies over the range of 2-80 MHz) indicated that the emissions of these three systems were well characterized by single exponential decays corresponding to 1.45 ns for the fluorescamine-ethylamine derivative in buffer and to 7.74 and 11.03 ns for the fluorescamine-GDP derivative free in buffer and bound to EF-Tu, respectively. Multifrequency differential polarized phase fluorometry results indicated a rotational relaxation time of the protein-probe complex of approximately 88 ns; these data also indicated the lack of significant local motion for the probe. Addition of excess GDP to the EF-Tu-probe complex led to displacement of the fluorescamine-GDP derivative as evidenced by the change in both the steady-state and dynamic polarization values. The observed increase in fluorescence intensity upon displacement allowed us to follow the kinetics of the dissociation reaction; a dissociation rate constant of 5.0 X 10(-3) S-1 was determined. These results demonstrate the utility of this 2'-amino-2'-deoxy-GDP analogue as a probe of guanosine nucleotide dependent systems. 相似文献
8.
Fluorescent imaging of cytoskeletal structures permits studies of both organization within the cell and dynamic reorganization of the cytoskeleton itself. Traditional fluorescent labels of microtubules, part of the cytoskeleton, have been used to study microtubule localization, structure, and dynamics, both in vivo and in vitro. However, shortcomings of existing labels make imaging of microtubules with high precision light microscopy difficult. In this paper, we report a new fluorescent labeling technique for microtubules, which involves a GTP analog modified with a bright, organic fluorophore (TAMRA, Cy3, or Cy5). This fluorescent GTP binds to a specific site, the exchangeable site, on tubulin in solution with a dissociation constant of 1.0±0.4 μM. Furthermore, the label becomes permanently incorporated into the microtubule lattice once tubulin polymerizes. We show that this label is usable as a single molecule fluorescence probe with nanometer precision and expect it to be useful for modern subdiffraction optical microscopy of microtubules and the cytoskeleton. 相似文献
9.
Methods of high-speed centrifugation and limited proteolysis were used to probe the interaction of EF-Tu with EF-Ts on the ribosome. It is shown that EF-Ts dissociates from EF-Tu only after EF-Tu-mediated GTP hydrolysis, i.e. EF-Ts within the EF-Tu.ribosome complexes in the pre-GTP-hydrolysis state co-sediments with the ribosomes and its rate of proteolysis is distinct from that of free EF-Ts. Moreover, as seen from the difference in sensitivity to trypsin of ribosomal proteins L19 and L27 EF-Ts affects the interaction of EF-Tu with the ribosome. 相似文献
10.
Cai YC Bullard JM Thompson NL Spremulli LL 《The Journal of biological chemistry》2000,275(27):20308-20314
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA). 相似文献
11.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+. 相似文献
12.
Affinity labeling of eukaryotic initiation factor 2 and elongation factor 1 alpha beta gamma with GTP analogs 总被引:4,自引:0,他引:4
As part of an attempt to understand the specific function and role of each subunit in multisubunit protein synthesis factors, we have attempted to identify the nucleotide binding peptides of eukaryotic initiation factor 2 (eIF-2). To ensure that the interactions were of a specific nature, two general controls were used: first, other protein factors with characterized GTP binding activity were tested; second, all affinity labeling was checked for nucleotide specificity by protection with the authentic nucleotide at a 10-fold molar excess over the affinity reagent. Results with a number of GTP modifying reagents ([alpha-32P]GTP, [alpha-32P]GDP, oxidized [alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GDP, and 5'-p-[8-3H]fluorosulfonylbenzoyl guanosine) indicate that appropriate conditions for both nucleotide and subunit specific labeling have been achieved. Under these conditions all reagents modified the beta subunit of eIF-2. Complementary studies with subunit-deficient forms of eIF-2 also suggest that the beta subunit of eIF-2 is involved with GTP binding. Coupled with other data suggesting that the gamma subunit of eIF-2 might be involved in GTP binding and amino acid sequence data of eIF-2 gamma from which a part of a GTP binding consensus sequence can be localized, support is provided for the concept of alternate GTP binding domains or a GTP binding domain shared between different subunits of eIF-2. 相似文献
13.
The ribosomal subunit requirements for GTP hydrolysis by reticulocyte polypeptide elongation factors EF-1 and EF-2 总被引:2,自引:0,他引:2
W McKeehan 《Biochemical and biophysical research communications》1972,48(5):1117-1122
Both the 60S and 40S ribosomal subunits effect the GTPase activity of mammalian elongation factors EF-1 and EF-2. EF-2 promoted hydrolysis is supported by the 60S subunit alone, and is stimulated by the 40S subunit. EF-1 GTPase activity requires both the 60S and 40S ribosomal subunits. 相似文献
14.
Evidence is presented that a light form of elongation factor 1 from calf brain interacts with lecithin. In the presence of lecithin, the protein becomes more stable, binds to GTP less well and behaves as an aggregate during gel filtration. 相似文献
15.
16.
Hotokezaka Y Tobben U Hotokezaka H Van Leyen K Beatrix B Smith DH Nakamura T Wiedmann M 《The Journal of biological chemistry》2002,277(21):18545-18551
eEF1A, the eukaryotic homologue of bacterial elongation factor Tu, is a well characterized translation elongation factor responsible for delivering aminoacyl-tRNAs to the A-site at the ribosome. Here we show for the first time that eEF1A also associates with the nascent chain distal to the peptidyltransferase center. This is demonstrated for a variety of nascent chains of different lengths and sequences. Interestingly, unlike other ribosome-associated factors, eEF1A also interacts with polypeptides after their release from the ribosome. We demonstrate that eEF1A does not bind to correctly folded full-length proteins but interacts specifically with proteins that are unable to fold correctly in a cytosolic environment. This association was demonstrated both by photo-cross-linking and by a functional refolding assay. 相似文献
17.
18.
Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus 总被引:7,自引:0,他引:7
Transfer ribonucleic acids containing 2-thiocytidine in position 75 ([s2C]tRNAs) were prepared by incorporation of the corresponding cytidine analogue into 3'-shortened tRNA using ATP(CTP):tRNA nucleotidyltransferase. [s2C]tRNA was selectively alkylated with fluorescent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS) on the 2-thiocytidine residue. The product [AEDANS-s2C]aminoacyl-tRNA, forms a ternary complex with Escherichia coli elongation factor Tu and GTP, leading to up to 130% fluorescence enhancement of the AEDANS chromophore. From fluorescence titration experiments, equilibrium dissociation constants of 0.24 nM, 0.22 nM and 0.60 nM were determined for yeast [AEDANS-s2C]Tyr-tRNATyr, yeast Tyr-tRNATyr, and the homologous E. coli Phe-tRNAPhe, respectively, interacting with E. coli elongation factor Tu.GTP. The measurement of the association and dissociation rates of the interaction of [AEDANS-s2C]Tyr-tRNATyr with EF-Tu.GTP and the temperature dependence of the resulting dissociation constants gave values of 55 J mol-1 K-1 for delta S degrees' and -34.7 kJ mol-1 for delta H degrees' of this reaction. 相似文献
19.
The archaeal Sulfolobus solfataricus elongation factor 1alpha (SsEF-1alpha) bound to GTP or to its analogue guanyl-5'-yl imido diphosphate [Gpp(NH)p] formed a ternary complex with either Escherichia coli Val-tRNAVal or Saccharomyces cerevisiae Phe-tRNAPhe as demonstrated by gel-shift and gel-filtration experiments. Evidence of such an interaction also came from the observation that SsEF-1alphaz.rad;Gpp(NH)p was able to display a protective effect against either the spontaneous deacylation or the digestion of aminoacyl-tRNA by RNase A. Protection against the deacylation of aminoacyl-tRNA allowed evaluatation of the affinity of SsEF-1alphaz. rad;Gpp(NH)p for both aminoacyl-tRNAs used. The K'd values of the ternary complex containing S. cerevisiae Phe-tRNAPhe or E. coli Val-tRNAVal were 0.3 microM and 4.4 microM, respectively. In both cases, the affinity of SsEF-1alphaz.rad;Gpp(NH)p for aminoacyl-tRNA was three orders of magnitude lower than that of the homologous eubacterial ternary complexes, but comparable with the affinity shown by the ternary complex involving eukaryal EF-1alpha [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. 60, 47-77]. As already observed with eukaryal EF-1alpha, SsEF-1alpha in its GDP-bound form was also able to protect the ester bond of aminoacyl-tRNA, even though with a 10-fold lower efficiency compared with SsEF-1alphaz.rad;Gpp(NH)p. The overall results indicated that the archaeal elongation factor 1alpha shares several properties with eukaryal EF-1alpha but not with eubacterial EF-Tu. 相似文献
20.
The products of nitrous acid mediated-deamination of Phe-tRNAPhe from E. coli were analyzed and their capability to interact with elongation factor Tu from E. coli was investigated. Thin-layer chromatography as well as HPLC analysis revealed the existence of at least two deamination products, 3-phenyl-lactyl-tRNAPhe and cinnamyl-tRNAPhe. It could be shown that the aminoacyl-tRNA analogues were active in the formation of the ternary complex with EF-Tu X GTP, although with a lower efficiency than native Phe-tRNAPhe. For both modified acyl-tRNAs the dissociation constant was determined to be 3 X 10(-5) M. 相似文献