首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.  相似文献   

2.
In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.  相似文献   

3.
The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: the N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expression of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals.  相似文献   

4.
We have isolated a snf1/ccr1 mutant of Saccharomyces cerevisiae which loses viability upon starvation and fails to accumulate glycogen in response to abrupt depletion of phosphate or glucose. A snf1 null mutant is sensitive to heat stress and starvation and fails to accumulate glycogen during growth in rich medium. The phenotypes of the snf1 mutants are those commonly associated with an overactivation of the adenylate cyclase pathway. Mutations in adenylate cyclase or RAS2 which decrease the level of cAMP in the cell moderate the snf1 phenotype. In contrast, a mutation in RAS2 (RAS2val19) which increases the level of cAMP or a mutation in the regulatory subunit (BCY1) of cAMP-dependent protein kinase which results in unregulated cAMP-dependent protein kinase activity accentuates the snf1 phenotype. However, the action of SNF1 in the stress response appears at least partly independent of cAMP-dependent protein kinase because a snf1 phenotype is observed in a strain that lacks all three of the genes that encode the catalytic subunits of cAMP-dependent protein kinase. SNF1 therefore acts at least in part through a cAMP-independent pathway.  相似文献   

5.
We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional defects. S. pombe cap can suppress phenotypes associated with deletion of the C-terminal CAP domain in S. cerevisiae but does not suppress phenotypes associated with deletion of the N-terminal domain. Analysis of cap disruptants also mapped the function of cap to two domains. The functional loss of the C-terminal region of S. pombe cap results in abnormal cellular morphology, slow growth, and failure to grow at 37 degrees C. Increases in mating and sporulation were observed when the entire gene was disrupted. Overproduction of both cap and adenylyl cyclase results in highly elongated large cells that are sterile and have measurably higher levels of adenylyl cyclase activity. Our results indicate that cap is required for the proper function of S. pombe adenylyl cyclase but that the C-terminal domain of cap has other functions that are shared with the C-terminal domain of S. cerevisiae CAP.  相似文献   

6.
Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.  相似文献   

7.
CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.  相似文献   

8.
Human cationic antimicrobial protein (CAP37) is a neutrophil granule protein with monocyte chemotactic and antibacterial activity. A CAP37 cDNA clone of 899 bp was isolated from an HL-60 cDNA library using degenerate oligonucleotide probes based on partial N-terminal sequence of the CAP37 protein. The cDNA sequence predicts an open reading frame of 753 bp encoding a protein of 251 amino acids. A 26-residue eukaryotic signal peptide and a potential 7 amino acid pro-peptide are present at the N-terminus of the protein. The cDNA sequence also predicts three N-linked glycosylation attachment sites and eight intramolecular cysteines. The deduced amino acid sequence of CAP37 shows 44, 42, and 32% homology at the amino acid level to neutrophil elastase, myeloblastin, and cathepsin G, respectively, suggesting that CAP37 is a member of the serine protease gene family. CAP37 does not possess serine protease activity probably due to mutations in two of three residues in the catalytic triad of the "charge relay system." Whereas CAP37 is expressed in undifferentiated HL-60 cells no message is detected in mature neutrophils.  相似文献   

9.
The gene corresponding to the S. cerevisiae cell division cycle mutant cdc25 has been cloned and sequenced, revealing an open reading frame encoding a protein of 1589 amino acids that contains no significant homologies with other known proteins. Cells lacking CDC25 have low levels of cyclic AMP and decreased levels of Mg2+-dependent adenylate cyclase activity. The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene. These results suggest that normal RAS is dependent on CDC25 function. Furthermore, mutationally activated alleles of CDC25 are capable of inducing a set of phenotypes similar to those observed in strains containing a genetically activated RAS/adenylate cyclase pathway, suggesting that CDC25 encodes a regulatory protein. We propose that CDC25 regulates adenylate cyclase by regulating the guanine nucleotide bound to RAS proteins.  相似文献   

10.
We isolated cDNAs encoding a 115 kd human atrial natriuretic peptide (alpha ANP) receptor (ANP-A receptor) that possesses guanylate cyclase activity, by low-stringency hybridization with sea urchin Arbacia punctulata membrane guanylate cyclase probes. The human ANP-A receptor has a 32 residue signal sequence followed by a 441 residue extracellular domain homologous to the 60 kd ANP-C receptor. A 21 residue transmembrane domain precedes a 568 residue cytoplasmic domain with homology to the protein kinase family and to a subunit of the soluble guanylate cyclase. COS-7 cells transfected with an ANP-A receptor expression vector displayed specific [125I]alpha ANP binding, and exhibited alpha ANP stimulated cGMP production. These data demonstrate a new paradigm of cellular signal transduction where extracellular ligand binding allosterically regulates cyclic nucleotide second-messenger production by a receptor cytoplasmic catalytic domain.  相似文献   

11.
C B Gundersen  J A Umbach 《Neuron》1992,9(3):527-537
A novel strategy, termed suppression cloning, was used to identify a 7.4 kb cDNA encoding a putative subunit of the calcium channels that regulate transmitter release at nerve endings of Torpedo californica. The 585 nt open reading frame of this cDNA encodes a polypeptide of about 21.7 kd that is essential for the expression in frog oocytes of omega-conotoxin-sensitive, dihydropyridine-resistant, calcium channels. Sequence analysis reveals that this protein is closely related to two cloned cysteine string proteins of undertermined function that were recently localized to Drosophila nerve terminals using monoclonal antibodies.  相似文献   

12.
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.  相似文献   

13.
A Vojtek  B Haarer  J Field  J Gerst  T D Pollard  S Brown  M Wigler 《Cell》1991,66(3):497-505
CAP is a component of the S. cerevisiae adenylyl cyclase complex. The N-terminal domain is required for cellular RAS responsiveness. Loss of the C-terminal domain is associated with morphological and nutritional defects. Here we report that cap- cells bud randomly and are defective in actin distribution. The morphological and nutritional defects associated with loss of the CAP C-terminal domain are suppressed by over-expression of PFY, the gene encoding profilin, an actin- and polyphosphoinositide-binding protein. The phenotype of cells lacking PFY resembles that of cells lacking the CAP C-terminal domain. Study of mutated yeast profilins and profilins from Acanthamoeba suggests that the ability of profilin to suppress cap- cells is dependent upon a property other than, or in addition to, its ability to bind actin. This property may be its ability to bind polyphosphoinositides. We propose that CAP and profilin provide a link between growth signals and remodeling of the cellular cytoskeleton.  相似文献   

14.
15.
In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.  相似文献   

16.
Saccharomyces cerevisiae strains with a disrupted RAS1 gene and with an intact RAS2 gene (ras1- RAS2 strains) grew well on both fermentable and nonfermentable carbon sources. By constructing isogenic mutants having a disrupted RAS1 locus and a randomly mutagenized chromosomal RAS2 gene, we obtained yeast strains with specific growth defects. The strain TS1 was unable to grow on nonfermentable carbon sources and galactose at 37 degrees C, while it could grow on glucose at the same temperature. The mutated RAS2 gene in TS1 cells encoded a protein with the glycines at positions 82 and 84 replaced by serine and arginine respectively. Both mutations were necessary for temperature sensitivity. We also isolated a mutant yeast that was unable to grow on nonfermentable carbon sources both at 30 and 37 degrees C, while growing on glucose at both temperatures. This phenotype was caused by a single chromosomal mutation, leading to the replacement of aspartic acid 40 of the RAS2 protein by asparagine. A ras1- yeast strain with a chromosomal RAS2 gene harbouring the three mutations together did not grow at any temperature using non-fermentable carbon sources, but it was able to grow on glucose at 30 degrees C, and not at 37 degrees C. The mutated proteins were much less effective than the wild-type RAS2 protein in the stimulation of adenylate cyclase, but were efficiently expressed in vivo. The possible roles of residues 40, 82 and 84 of the RAS2 protein in the regulation of adenylate cyclase are discussed.  相似文献   

17.
We have constructed the yeast strain TS1, with the RAS2 gene replaced by mutant allele encoding a partially defective gene product, and with an inactive RAS1 gene. TS1 cells accumulate as unbudded cells upon temperature shift from 30 to 37 degrees C, thus showing that the RAS1 and RAS2 gene functions are important for progression through the G1 phase of the cell cycle. After the isolation of revertants able to grow at the nonpermissive temperature, we have found that a chromosomal point mutation can bypass the G1 arrest of TS1 and cdc25 cells, and the lethality of ras1 ras2 mutants. The mutation predicts the replacement of threonine by isoleucine at position 1651 of yeast adenylate cyclase. The RAS-independent, as well as the RAS-dependent adenylate cyclase activity, is increased by the mutation. Like the wild-type enzyme, the RAS-dependent activity of the mutant adenylate cyclase is turned on by the GTP-bound form of the RAS2 protein. The amino acid sequence surrounding the threonine 1651 shows similarity with protein kinase substrates. Possible implications for the function of adenylate cyclase are discussed.  相似文献   

18.
H S Shepherd  G Ledoigt  S H Howell 《Cell》1983,32(1):99-107
Light-harvesting chlorophyll a/b protein (LHCP) synthesis is highly regulated during the cell cycle in light-dark synchronized C. reinhardi cells. LHCPs are a family of cytoplasmically synthesized proteins which are imported into the chloroplast. LHCPs are derived from at least two precursor proteins (32 kd and 30 kd) that are synthesized in vitro and immunoprecipitated by antiserum against chlorophyll-protein complex II proteins. A DNA copy of the mRNA encoding a 32 kd LHCP precursor was cloned from cDNA synthesized from poly(A) RNA obtained from mid-light-phase synchronous cells. Using cloned cDNA (pHS16) as a hybridization probe, we found that a single 1.2 kb RNA complementary to pHS16 accumulates in a wave-like manner during the mid-light phase of the 12 hr light-12 hr dark cycle and correlates with the pattern of chlorophyll synthesis. Light, during the light phase in the light-dark cycle, is required for accumulation of this RNA.  相似文献   

19.
20.
Purified bovine brain phosphatidylinositol 3-kinase (Pl3-kinase) is composed of 85 kd and 110 kd subunits. The 85 kd subunit (p85 alpha) lacks Pl3-kinase activity and acts as an adaptor, coupling the 110 kd subunit (p110) to activated protein tyrosine kinases. Here the characterization of the p110 subunit is presented. cDNA cloning reveals p110 to be a 1068 aa protein related to Vps34p, a S. cerevisiae protein involved in the sorting of proteins to the vacuole. p110 expressed in insect cells possesses Pl3-kinase activity and associates with p85 alpha into an active p85 alpha-p110 complex that binds the activated colony-stimulating factor 1 receptor. p110 expressed in COS-1 cells is catalytically active only when complexed with p85 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号