首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micellar media was studied. It was shown that the deactivation of lipase had a great influence on the reaction kinetics. Based on whether the enzyme deactivation and influences of both product and substrate on enzyme stability were included or not, four different kinetic models were established. The simulating results demonstrated that the kinetic model, which including product inhibition, enzyme deactivation and the improvements of lipase stability by both product and substrate, fit the experimental data best with an overall relative error of 4.68%.  相似文献   

2.
In this study, we invetigated the hydrolysis of olive oil catalyzed by a surfactant-coatedCandida rugosa lipase in a hydrophilic polyacrylonitrile hollow fiber membrane reactor and then compared the results to those using the native lipase. The organic phase was passed through the hollow inner fibers of the reactor and consisted of either the coated lipase and olive oil dissolved in isooctane or the coated lipase dissolved in pure olive oil. The aqueous phase was pumped through the outer space. After 12 h and with conditions of 30°C, 0.12 mg enzyme/mL and 0.62 M olive oil, the substrate conversion of the coated lipase reached 60%. This was twice the conversion for the same amount of native lipase that was pre-immobilized on the membrane surface. When using pure olive oil, after 12 h the substrate conversion of the coated lipase was 50%. which was 1.4 times higher than that of the native lipase.  相似文献   

3.
In this study, fish oil was hydrolyzed by lipase in a fish oil-in-water emulsion system in an effort to improve the functional properties of fish oil. Lipase activity was found to depend on the quality of the water/fish oil interface area. We selected several suitable emulsifiers, and their emulsifying activities were evaluated under a variety of conditions, including concentration, water-oil ratios, pH values, and temperature. Among the selected emulsifiers, the emulsifying activity of gelatin was higher than those of carboxymethyl chitin (CM-chitin), bovine serum albumin, and Tween-20, all of which are commercial emulsificers Moreover, the emulsifying activity of the gelatin solution was the highest at 0.5%, and was reduced with increasing concentrations of above 1%. The optimal water-oil ratio, pH, and temperature conditions were 40% (w/v), pH 8.0 and 40°C, respectively. Under these conditions, the emulsifying activity of gelatin solution was 86%. The emulsion structure of the gelatin solution was characterized by high density and small particle size. The degree of sardine oil hydrolysis in the emulsion system was 50% higher than that of the non-emulsion system. The lipid species of the lipase-prepared sardine oil hydrolysates were identified as triacylglycerol, 1,3- and 1,2-diacylglycerol, monoacylglycerol, and fatty acid.  相似文献   

4.
The hydrolysis of sunflower oil using Candida cylindracea lipase in reversed micelles of AOT/isooctane was investigated. The inhibition caused by substrate and hydrolysis products has been found in the process of reaction. It was revealed that the extent of inhibition caused by oleic acid was higher than that caused by glycerol, and was much more serious in the case of the mixture of hydrolysis products. Moreover, with the initial addition of glycerol into the reaction mixture, the stability of lipase could be increased during the hydrolysis of sunflower oil in reversed micelles. We thank the National Natural Science Foundation of China for the financial support of this work. We also thank Prof. Xu, Jia-li for his contributions to this work.  相似文献   

5.
The kinetics of the hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow fiber reactor can be modeled in terms of a three‐parameter rate expression. This rate expression consists of the product of a two‐parameter rate expression for the hydrolysis reaction itself (which is of the general Michaelis–Menten form) and a first‐order rate expression for deactivation of the enzyme. Optimum operating conditions correspond to 30°C and buffer pH values of 7.0 during both immobilization of the enzyme and the hydrolysis reaction. Under these conditions, the total fatty acid concentration in the effluent oil stream for a fluid residence time of 4 h is approximately 1.6 M. This concentration corresponds to hydrolysis of approximately 50% of the glyceride bonds present in the feedstock corn oil. The fatty acid of primary interest in the effluent stream is linoleic acid. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 568–579, 1999.  相似文献   

6.
The aptitude of a hollow-fiber membrane reactor to determine lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from Canadida cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its conformation is hardly altered by immobilization, resulting in an activity comparable to that of the enzyme in its native form. The reaction kinetics defined on the membrane surface area were found to obey Michaelis-Menten kinetics. The specific activity of the lipase in the membrane reactor was found to be significantly higher than in an emulsion reactor. The activity and stability of the enzyme immobilized on a hydrophilic membrane surface seem not to be influenced significantly by the choice of the membrane material. The hollow-fiber membrane reactor is a suitable tool to assess lipase kinetics in a fast and convenient way.  相似文献   

7.
Flat sheet membranes made of polyetheretherketone, known as PEEK-WC, and O-octyloxycarbonyl beta-cyclodextrins were prepared by the phase inversion method. The cyclodextrins were entrapped in the polymeric membranes easily and simply in a single operation. Such functionalized membranes were tested for their catalytic activity. PNPA hydrolysis in a cyclodextrin membrane reactor was carried out as a model reaction. A significant improvement of reaction rate in comparison with the batch hydroxide ions catalyzed reaction was observed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
A lipase from A spergillus niger, immobilized by adsorption on a microporous, polypropylene flat-sheet membrane, was used to effect the continous hydrolysis of the glycerides of melted butterfat at 35°C. For the reaction conditions used in this research, a pseudo-zero order rate expression can be used to model the kinetics of the overall hydrolysis of butterfat. Multiresponse nonlinear regression methods were employed to determine the kinetic parameters of a multisubstrate rate expression derived fro ma mechanism based on the general Michaëlis–Menten approach. For the multiresponse data taken at pH 7.0, the dependence of the maximum rate of release of each fatty acid residue of butterfat on its carbon chain length is accurately described by a skewed, bell-shaped (or Γ-type) distribution. Data taken at five different pH values were fit assuming a Dixon–Webb diprotic model for the pH dependence of the reaction rate. The thermal deactivation of the immobilized lipase obeyed first-order kinetics with a half-life of 19.9 days at 35°C. The multisubstrate model is useful for the prediction of the free fatty acid profile of lipolyzed butterfat, whereas the lumped-substrate model provides an estimate of the overall degree of hydrolysis as a function of the reactor space time.  相似文献   

9.
Activity and stability of lipase in Aerosol-OT/isooctane reverse micelles   总被引:2,自引:0,他引:2  
The stability of Candida rugosa lipase, which catalyzes the hydrolysis reaction of olive oil in AOT/isooctane reverse micelles, decreased with the increase of 0 (defined as the molar ratio of water to surfactant) and Aerosol-OT concentration. The addition of a non-ionic cosurfactant, tetraethylene glycol dodecyl ether (C12E4), preserved enzymatic activity. The residual activity of the lipase was 53% after 24 h, while the enzyme completely lost its activity within 6 h in the absence of C12E4 addition. The stabilizing effect of C12E4 resulted in the increase of conversion. The enhancement of the activity and stability of lipase in reverse micelles by the addition of C12E4 may contribute to increase the rigidity of the micellar matrix stabilizing the enzyme structure.  相似文献   

10.
Candida rugosa lipase has been used to investigate the hydrolysis of high concentration olive oil in the AOT-isooctane reversed micellar system at W(o) = 10, pH 7.1, and 37 degrees C. Results from this work show the hydrolytic reaction obeys Michaelis-Menten kinetics up to the initial substrate concentration of 1.37M, with turnover number k(cat) and Michaelis constant K(M) of 67.1 mumol/min mg enzyme and 0.717M, respectively. A competitive inhibition by the main product, oleic acid, has been found with a dissociation constant K(I) for the complex EP* of 0.089M. The rate equation was further analyzed in the time course reaction and was found in agreement with the experimental results for lower substrate concentrations, up to 0.341M. Large deviation occurred at high substrate concentrations, which may be due to the effects of large consumption of water on kinetics, on the formation of glycerol, and on the deactivation of lipase in the hydrolysis reaction as well.  相似文献   

11.
Sakaki K  Itoh N 《Biotechnology letters》2003,25(19):1591-1595
Racemic 2-hydroxy octanoic acid methyl ester was optically resolved by lipase-catalyzed hydrolysis in a biphasic membrane reactor using hydrophilic/hydrophobic capillary membranes. In a buffer/hexane biphasic membrane reactor using hydrophilic ultrafiltration membranes, (S)-2-hydroxy octanoic acid was recovered from the aqueous phase at 59–67% yield and 0.9–0.92 enantiomeric excess (ee), and the ester of (R)-isomer was recovered from the organic phase at 73–75% yield and 0.92–0.99 ee.  相似文献   

12.
13.
Summary Olive oil was almost completely hydrolyzed by lipase in reverse micelles. R value and initial water content were found to be the most important factors that determine the hydrolyzing rate and degree of hydrolysis, respectively. The hydrolysis rate and the stability of the enzyme were affected by stirring and addition of histidine or glycerol.  相似文献   

14.
The objective of this study was to develop a continuous hydrolysis process for the enzymatic saccharification of liquefied corn starch using a membrane reactor. A residence time distribution study confirmed that the membrane reactor could be modeled as a simple continuous stirred tank reactor (CSTR). Kinetic studies indicated that the continuous reactor operated in the first-order region with respect to substrate concentration at substrate concentrations greater than 200 g/L. At a residence time of 1 h and an enzyme concentration of 1 g/L, the maximum reaction velocity (V(m)) was 3.86 g glucose/L min and the apparent Michaelis constant (K(m) (')) was 562 g/L. The K(m) (') value for the continuous reactor was 2-7 times greater than that obtained in a batch reactor.Kinetic data were fit to a model based on the Michaelis-Menten rate expression and the design equation for a CSTR. Application of the model at low reactor space times was successful. At space times of 6 min or less, the model predicted the reactor's performance reasonably well. Additional work on the detection and quantitation of reversion products formed by glucoamylase is required. Isolation, detection, and quantitation of reversion products by HPLC was difficult. Detailed analysis on the formation of these reversion products could lead to better reactor designs in the future.  相似文献   

15.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

16.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

17.
Continuous hydrolysis of olive oil by immobilized lipase in organic solvent   总被引:4,自引:0,他引:4  
Lipase (EC 3.1.1.3) from Candida rugosa was immobilized with DEAE-Sephadex A50, Sephadex G50, Sephadex LH-20, Amberlite IRA94, and Amberlite XAD-7. The enzye immobilized with DEAE-Sephadex A50 was found to be most effective for continuous hydrolysis of olive oil in isooctane. For the continuous reaction, 0.2 g of dry immobilized enzyme was swollen with predetermined amount of water, and packed in a glass column reactor. When the organic solvent (Isooctane) containing olive oil substrate was cocurrently fed with aqueous buffer, the two phases were evenly distributed throughout the packed bed without surfactant supplement or prior mixing of the two phases. A small amount of the surfactant (AOT) was used only in packing procedure, and no additional surfactant was necessary thereafter. Effects of initial water content of the swollen gel, buffer types, and strength were examined in the continuous reaction. Our results suggest that the operational half-life was affected by desorption of the bound enzyme. Under the conditions of 20% olive oil in isooctane and 25 mM triethanolamine buffer (pH 7.0), operational half life was 220 h at 30 degrees C. The reactor was also operable with n-hexane, but the operational stability of the immobilized enzyme in n-hexane was only half of that in isooctane. Our results indicate that various enzyme carrier having hydrophilic or amphiphilic properties could be used for two-phase continuous reaction in packed-bed column, reactor without any surfactant supply or prior dispersion of the two immiscible phases. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
The stability of lipase in AOT/isooctane reversed micellar solution was investigated. It was found that the lipase deactivated to a stable state that was not completely inactivated. The lipase residual activity after achieving the stable state in AOT/isooctane reversed micelles at 30 °C, pH 7.0, W0=8.0 was found to be 0.15, and the first-order deactivation rate coefficient of lipase at the same conditions was regressed to be 0.75 h−1. The stability of lipase was increased while oleic acid was added. Assuming the protection of oleic acid to lipase stability is due to the lipase–oleic acid complex does not decay, the kinetic model of lipase deactivation in AOT/isooctane reversed micellar solution including the influence of oleic acid was established. It was shown with the model equation that the increase in stability of the enzyme by oleic acid could be quantitatively estimated by the dissociation constant of lipase–oleic acid complex which was determined by product inhibition experiments. The model equation fit the experimental data well with an average relative deviation of 3.40%.  相似文献   

19.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   

20.
The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号