首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional solution structure obtained by NMR of the A35T mutant vnd/NK-2 homeodomain bound to the vnd/NK-2 consensus 16 bp DNA sequence was determined. This mutation to threonine from alanine in position 35 in helix II of the vnd/NK-2 homeodomain is associated with early embryonic lethality in Drosophila melanogaster. Although the unbound mutant protein is not structured, in the DNA-bound state it adopts the three-helix fold characteristic of all known homeodomains, but with alterations relative to the structure of the wild-type analogue. These structural modifications occur, and are accompanied by a 50-fold reduction in the DNA binding affinity, even though most of the protein-DNA interactions originally seen for the wild-type homeodomain are found likewise in the threonine analogue. Alterations include torsional angle changes in the loop between helix I and helix II, and in the turn between helix II and helix III, as well as in a distortion of the usual antiparallel orientation of helix I with respect to helix II. The alteration of the position of leucine 40 in the A35T mutant is proposed to explain the observed 1.27 ppm upfield shift of the corresponding amide proton resonance relative to the value observed for the wild-type analogue. A detailed comparison of the structures of the mutant A35T and wild-type vnd/NK-2 homeodomains bound to the cognate DNA is presented. The consequences of the structural alteration of the DNA-bound A35T mutant vnd/NK-2 protein may constitute the basis of the observed early embryonic lethality.  相似文献   

2.
The cardiac-specific Nkx2.5 homeodomain has been expressed as a 79-residue protein with the oxidizable Cys(56) replaced with Ser. The Nkx2.5 or Nkx2.5(C56S) homeodomain is 73% identical in sequence to and has the same NMR structure as the vnd (ventral nervous system defective)/NK-2 homeodomain of Drosophila when bound to the same specific DNA. The thermal unfolding of Nkx2.5(C56S) at pH 6.0 or 7.4 is a reversible, two-state process with unit cooperativity, as measured by differential scanning calorimetry (DSC) and far-UV circular dichroism. Adding 100 mM NaCl to Nkx2.5(C56S) at pH 7.4 increases T(m) from 44 to 54 +/- 0.2 degrees C and DeltaH from 34 to 45 +/- 2 kcal/mol (giving a DeltaC(p) of approximately 1.2 kcal K(-)(1) mol(-)(1) for homeodomain unfolding). DSC profiles of Nkx2.5 indicate fluctuating nativelike structures at <37 degrees C. Titrations of specific 18 bp DNA with Nkx2.5(C56S) in buffer at pH 7.4 with 100 mM NaCl yield binding constants of 2-6 x 10(8) M(-)(1) from 10 to 37 degrees C and a stoichiometry of 1:1 for homeodomain binding DNA, using isothermal titration calorimetry. The DNA binding reaction of Nkx2.5 is enthalpically controlled, and the temperature dependence of DeltaH gives a DeltaC(p) of -0.18 +/- 0.01 kcal K(-)(1) mol(-)(1). This corresponds to 648 +/- 36 A(2) of buried apolar surface upon Nkx2.5(C56S) binding duplex B-DNA. Thermodynamic parameters differ for Nkx2.5 and vnd/NK-2 homeodomains binding specific DNA. Unbound NK-2 is more flexible than Nkx2.5.  相似文献   

3.
Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant Asn51 residue, seen in all known homeodomain/DNA structures, is critical for binding affinity and specificity.  相似文献   

4.
5.
The NMR structures have been determined for a 13C/15N doubly labeled 14 base-pair DNA duplex comprising the BS2 operator sequence both free in solution and in the complex with the Antennapedia homeodomain. The impact of the DNA labeling is assessed from comparison with a previous structure of the same complex that was determined using isotope labeling only for the protein. Differences between the two structure determinations are nearly completely limited to the DNA, which retains the global B -conformation of the free DNA also in the complex. Local protein-induced conformational changes are a narrowing of the minor groove due to the interaction with the N-terminal arm of the homeodomain, and changes of the sugar puckers of the deoxyriboses G5 and C6, which are apparently induced by van der Waals interactions with Tyr25, and with Gln50 and Arg53, respectively. The high conservation of these amino acid residues in homeodomains suggests that protein-induced shifts in some sugar puckers contribute to the affinity of homeodomains to their cognate DNA. The data obtained here with the Antennapedia homeodomain-DNA complex clearly show that nucleic acid isotope-labeling can support detailed conformational characterization of DNA in complexes with proteins, which will be indispensable for structure determinations of complexes containing globally distorted DNA conformations.  相似文献   

6.
Molecular dynamics (MD) simulations were performed for investigating the role of Gln50 in the engrailed homeodomain-DNA recognition. Employing the crystal structure of free engrailed homeodomain and homeodomain-DNA complex as a starting structure, we carried out MD simulations of: (i) the complex between engrailed homeodomain and a 20 base-pair DNA containing TAATTA core sequence; (ii) the free engrailed homeodomain. The simulations show that homeodomain flexibility does not depend on its ligation state. The engrailed homeodomain shows similar flexibility, and the recognition helix-3 shows very similar characteristic of high rigidity and limited conformational space in two complexation states. At the same time, DNA structure has also no obvious conformational fluctuations. These results preclude the possibility of the side chain of Gln50 forming direct hydrogen bonds to the core DNA bases. MD simulations confirm a few well-conserved sites for water-mediated hydrogen bonds from protein to DNA are occupied by water molecules, and Gln50 interacts with corresponding core DNA bases through water-mediated hydrogen bonds. So Gln50 plays a relatively modest role in determining the affinity and specificity of the engrailed homeodomain. In addition, the electrostatic interaction between homeodomain and phosphate backbone of the DNA is a main factor for N- and C-terminal arm becoming ordered upon DNA binding.  相似文献   

7.
Chaney BA  Clark-Baldwin K  Dave V  Ma J  Rance M 《Biochemistry》2005,44(20):7497-7511
We have determined the solution structure of a complex containing the K50 class homeodomain Pituitary homeobox protein 2 (PITX2) bound to its consensus DNA site (TAATCC). Previous studies have suggested that residue 50 is an important determinant of differential DNA-binding specificity among homeodomains. Although structures of several homeodomain-DNA complexes have been determined, this is the first structure of a native K50 class homeodomain. The only K50 homeodomain structure determined previously is an X-ray crystal structure of an altered specificity mutant, Engrailed Q50K (EnQ50K). Analysis of the NMR structure of the PITX2 homeodomain indicates that the lysine at position 50 makes contacts with two guanines on the antisense strand of the DNA, adjacent to the TAAT core DNA sequence, consistent with the structure of EnQ50K. Our evidence suggests that this side chain may make fluctuating interactions with the DNA, which is complementary to the crystal data for EnQ50K. There are differences in the tertiary structure between the native K50 structure and that of EnQ50K, which may explain differences in affinity and specificity between these proteins. Mutations in the human PITX2 gene are responsible for Rieger syndrome, an autosomal dominant disorder. Analysis of the residues mutated in Rieger syndrome indicates that many of these residues are involved in DNA binding, while others are involved in formation of the hydrophobic core of the protein. Overall, the role of K50 in homeodomain recognition is further clarified, and the results indicate that native K50 homeodomains may exhibit differences from altered specificity mutants.  相似文献   

8.
The MAT alpha 2 homeodomain regulates the expression of cell type-specific genes in yeast. We have determined the 2.7 A resolution crystal structure of the alpha 2 homeodomain bound to a biologically relevant DNA sequence. The DNA in this complex is contacted primarily by the third of three alpha-helices, with additional contacts coming from an N-terminal arm. Comparison of the yeast alpha 2 and the Drosophila engrailed homeodomain-DNA complexes shows that the protein fold is highly conserved, despite a 3-residue insertion in alpha 2 and only 27% sequence identity between the two homeodomains. Moreover, the orientation of the recognition helix on the DNA is also conserved. This docking arrangement is maintained by side chain contacts with the DNA--primarily the sugar-phosphate backbone--that are identical in alpha 2 and engrailed. Since these residues are conserved among all homeodomains, we propose that the contacts with the DNA are also conserved and suggest a general model for homeodomain-DNA interactions.  相似文献   

9.
10.
11.
12.
13.
A Hoogsteen base pair embedded in undistorted B-DNA   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

14.
The conformational stabilities of the vnd (ventral nervous system defective)/NK-2 homeodomain [HD(wt); residues 1-80 that encompass the 60-residue homeodomain] and those harboring mutations in helix III of the DNA recognition site [HD(H52R) and HD(H52R/T56W)] have been investigated by differential scanning calorimetry (DSC) and ellipticity changes at 222 nm. Thermal unfolding reactions at pH 7.4 are reversible and repeatable in the presence of 50-500 mM NaCl with DeltaC(p) = 0.52 +/- 0.04 kcal K(-1) mol(-1). A substantial stabilization of HD(wt) is produced by 50 mM phosphate or by the addition of 100-500 mM NaCl to 50 mM Hepes, pH 7.4, buffer (from T(m) = 35.5 degrees C to T(m) 43-51 degrees C; DeltaH(vH) congruent with 47 +/- 5 kcal mol(-1)). The order of stability is HD(H52R/T56W) > HD(H52R) > HD(wt), irrespective of the anions present. Progress curves for ellipticity changes at 222 nm as a function of increasing temperature are fitted well by a two-state unfolding model, and the cooperativity of secondary structure changes is greater for mutant homeodomains than for HD(wt) and also is increased by adding 100 mM NaCl to Hepes buffer. A 33% quench of the intrinsic tryptophanyl residue fluorescence of HD(wt) by phosphate binding (K(D)' = 2.6 +/- 0.3 mM phosphate) is reversed approximately 60% by DNA binding. Thermodynamic parameters for vnd/NK-2 homeodomain proteins binding sequence-specific 18 bp DNA have been determined by isothermal titration calorimetry (10-30 degrees C). Values of DeltaC(p) are +0.25, -0.17, and -0.10 +/- 0.04 kcal K(-1) mol(-1) for HD(wt), HD(H52R), and HD(H52R/T56W) binding duplex DNA, respectively. Interactions of homeodomains with DNA are enthalpically controlled at 298 K and pH 7.4 with corresponding DeltaH values of -6.6 +/- 0.5, -10.8 +/- 0.1, and -9.0 +/- 0.6 kcal mol(-1) and DeltaG' values of -11.0 +/- 0.1, -11.0 +/- 0.1, and -11.3 +/- 0.3 kcal mol(-1) with a binding stoichiometry of 1.0 +/- 0.1. Thermodynamic parameters for DNA binding are not predicted from homeodomain structural changes that occur upon complexing to DNA and must reflect also solvent and possibly DNA rearrangements.  相似文献   

15.
Gutmanas A  Billeter M 《Proteins》2004,57(4):772-782
Four molecular dynamics simulation trajectories of complexes between the wild-type or a mutant Antennapedia homeodomain and 2 DNA sequences were generated in order to probe the mechanisms governing the specificity of DNA recognition. The starting point was published affinity measurements showing that a single protein mutation combined with a replacement of 2 base pairs yields a new high-affinity complex, whereas the other combinations, with changes on only 1 macromolecule, exhibited lower affinity. The simulations of the 4 complexes yielded fluctuating networks of interaction. On average, these networks differ significantly, explaining the switch of affinity caused by the alterations in the macromolecules. The network of mostly hydrogen-bonding interactions involving several water molecules, which was suggested both by X-ray and NMR structures of the wild-type homeodomain and its DNA operator sequence, could be reproduced in the trajectory. More interestingly, the high-affinity complex with alterations in both the protein and the DNA yielded again a dynamic but very tight network of intermolecular interactions, however, attributing a significantly stronger role to direct hydrophobic interactions at the expense of water bridges. The other 2 homeodomain-DNA complexes, with only 1 molecule altered, show on average over the trajectories a clearly reduced number of protein-DNA interactions. The observations from these simulations suggest specific experiments and thus close the circle formed by biochemical, structural, and computational studies. The shift from a water-dominated to a more "dry" interface may prove important in the design of proteins binding DNA in a specific manner.  相似文献   

16.
HOX11 is a homeobox-containing oncogene of specific T-cell leukemias. We determined the DNA binding specificity of the Hox11 protein by using a novel technique of random oligonucleotide selection developed in this study. The optimal Hox11 binding sequence, GGCGGTAAGTGG, contained a core TAAGTG motif that is consistent with a prediction based on the residues at specific positions that potentially make DNA base contacts and models of homeodomain-DNA interaction proposed from studies with other homeodomains. The specific interaction between Hox11 and the selected optimal binding sequence was further confirmed by band-shift and DNA competition assays. Given that the Hox11 homeodomain shares low homology with other well studied homeodomains, the presence of a predictable recognition core motif in its optimal binding sequence supports the notion that different homeodomains interact with DNA in a similar manner, through highly conserved residues at specific positions that allow contact with DNA.  相似文献   

17.
HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.  相似文献   

18.
19.
Translocation of the pAntp peptide and its amphipathic analogue AP-2AL   总被引:2,自引:0,他引:2  
The pAntp peptide, corresponding to the third helix of the homeodomain of the Antennapedia protein, enters by a receptor-independent process into eukaryotic cells. The interaction between the pAntp peptide and the phospholipid matrix of the plasma membrane seems to be the first step involved in the translocation mechanism. However, the mechanism by which the peptide translocates through the cell membrane is still not well established. We have investigated the translocation ability of pAntp through a protein-free phospholipid membrane in comparison with a more amphipathic analogue. We show by fluorescence spectroscopy, circular dichroism, NMR spectroscopy, and molecular modeling that pAntp is not sufficiently helically amphipathic to cross a phospholipid membrane of a model system. Due to its primary sequence related to its DNA binding ability in the Antennapedia homeodomain-DNA complex, the pAntp peptide does not belong to the amphipathic alpha-helical peptide family whose members are able to translocate by pore formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号