首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
S-layer homology (SLH) module polypeptides were derived from Clostridium thermocellum S-layer proteins Slp1 and Slp2 and cellulosome anchoring protein AncA as rSlp1-SLH, rSlp2-SLH, and rAncA-SLH respectively. Their binding specificities were investigated using C. thermocellum cell-wall preparations. rAncA-SLH associated with native peptidoglycan-containing sacculi from C. thermocellum, including both peptidoglycan and secondary cell wall polymers (SCWP), but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWPs, suggesting that SCWPs are responsible for binding with SLH modules of AncA. On the other hand, rSlp1-SLH and rSlp2-SLH associated with HF-EPCS, suggesting that these polypeptides had an affinity for peptidoglycan. A binding assay using a peptidoglycan fraction prepared from Escherichia coli cells definitely confirmed that rSlp1-SLH and rSlp2-SLH specifically interacted with peptidoglycan but not with SCWP.  相似文献   

2.
S-layer homology (SLH) module polypeptides were derived from Clostridium thermocellum S-layer proteins Slp1 and Slp2 and cellulosome anchoring protein AncA as rSlp1-SLH, rSlp2-SLH, and rAncA-SLH respectively. Their binding specificities were investigated using C. thermocellum cell-wall preparations. rAncA-SLH associated with native peptidoglycan-containing sacculi from C. thermocellum, including both peptidoglycan and secondary cell wall polymers (SCWP), but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWPs, suggesting that SCWPs are responsible for binding with SLH modules of AncA. On the other hand, rSlp1-SLH and rSlp2-SLH associated with HF-EPCS, suggesting that these polypeptides had an affinity for peptidoglycan. A binding assay using a peptidoglycan fraction prepared from Escherichia coli cells definitely confirmed that rSlp1-SLH and rSlp2-SLH specifically interacted with peptidoglycan but not with SCWP.  相似文献   

3.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

4.
In Escherichia coli, auxotrophy for diaminopimelic acid (A2pm) can be suppressed by growth with exogenous cystathionine or lanthionine. The incorporation of cystathionine into peptidoglycan metabolism was examined with a dapA metC mutant, whereas for lanthionine, a dapA metA mutant strain was used. Analysis of peptidoglycan precursors and sacculi isolated from cells grown with epimeric cystathionine or lanthionine showed that meso-A2pm was totally replaced in the same position by either sulfur-containing amino acid. Moreover, mainly L-allo-cystathionine (95%) or meso-lanthionine (93%) was incorporated into the precursors and sacculi. For this purpose, a new, efficient high-pressure liquid chromatography (HPLC) technique for analysis of the cystathionine isomers was developed. The formation of the UDP-MurNAc tripeptide appeared to be a critical step, since the MurE synthetase accepted meso-lanthionine or D-allo- or L-allo-cystathionine in vitro as good substrates, although with higher Km values. Presumably, the 10-fold-higher UDP-MurNAc-L-Ala-D-Glu pool of cells grown with cystathionine or lanthionine ensured a normal rate of synthesis. The kinetic parameters of the MurF synthetase catalyzing the addition of D-alanyl-D-alanine were very similar for the meso-A2pm-,L-allo-cystathionine-, and meso-lanthionine-containing UDP-MurNAc tripeptides. HPLC analysis of the soluble fragments resulting from 95% digestion by Chalaropsis N-acetylmuramidase of the peptidoglycan material in isolated sacculi revealed that the proportion of the main dimer was far lower in cystathionine and lanthionine sacculi.  相似文献   

5.
Tetragonal layer protein (T-layer) isolated from Bacillus sphaericus NTCC 9602 (wild type) or 9602 Lmw (variant) bonded specifically to the sacculi (peptidoglycan) of either cell type. Only uncleaved T-layer subunits were capable of specific recognition of the B. sphaericus sacculi; other Bacillus strains and gram-positive bacterial sacculi would not adsorb B. sphaericus strain 9602 T-layer. The peptidogylcan did not function as a template since isolated T-layer subunits self-assembled into characteristic pattern. Upon reassociation with sacculi, T-layer assemblies were randomly oriented patches compared with more continuous strictly oriented pattern on cells or fresh cell walls. T-layer associated with the sacculus was less susceptible to conditions that dissociated in vitro-assembled T-layer. Mild proteolysis of both wild-type and variant T-layer subunits by a variety of enzymes reduced the molecular weight by 18,000 in all cases, indicating that one region of the molecule was particularly susceptible to cleavage. Subunits from which the minor fragment had been cleaved upon aging retained the capacity to assemble in vitro, but would no longer adsorb to sacculi. Thus, the ability of T-layer to form networks was separate from its ability to bind cell walls, and the 18,000-dalton piece of the T-layer polypeptide was necessary for attachment to the cell wall.  相似文献   

6.
7.
Quaternary structure and composition of squash NADH:nitrate reductase   总被引:6,自引:0,他引:6  
NADH:nitrate reductase (EC 1.6.6.1) was isolated from squash cotyledons (Cucurbita maxima L.) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on Bio-Gel A-1.5m. These preparations gave a single protein staining band (Mr = 115,000) on sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is homogeneous. The native Mr of nitrate reductase was found to be 230,000, with a minor form of Mr = 420,000 also occurring. These results indicate that the native nitrate reductase is a homodimer of Mr = 115,000 subunits. Acidic amino acids predominate over basic amino acids, as shown both by the amino acid composition of the enzyme and an isoelectric point for nitrate reductase of 5.7. The homogeneous nitrate reductase had a UV/visible spectrum typical of a b-type cytochrome. The enzyme was found to contain one each of flavin (as FAD), heme iron, molybdenum, and Mo-pterin/Mr = 115,000 subunit. A model is proposed for squash nitrate reductase in which two Mr = 115,000 subunits are joined to made the native enzyme. Each subunit contains 1 eq of FAD, cytochrome b, and molybdenum/Mo-pterin.  相似文献   

8.
When a staining technique using phosphotungstic acid (PTA) in 10% (w/v) chromic acid was applied to cells of Escherichia coli, the periplasmic space was seen as a dark 15-nm-thick layer of uniform appearance and constant width. Our observations are consistent with peptidoglycan being the main material stained. Isolated sacculi as well as purified peptidoglycan (protein free) were also stained by the same procedure, the thickness of the peptidoglycan being 8.8 +/- 1.8 and 6.6 +/- 1.5 nm, respectively. The increased thickness of the PTA-stained layer in stationary phase cells correlated well with the increased thickness of isolated sacculi or purified peptidoglycan and with the increased amount of peptidoglycan in such cells. Thickness measurements on isolated peptidoglycan were compatible with a two to three layer structure for material from exponential phase cells and with a four to five layer structure for that from stationary phase cells. Furthermore, the results indicated an uneven distribution of peptidoglycan material in the periplasmic space, the peptidoglycan spanning the space from the inner to the outer membrane.  相似文献   

9.
Purified outer membrane proteins O-8 and O-9 were able to bind to the peptidoglycan sacculi in sodium dodecyl sulfate solution. Binding was stimulated by lipopolysaccharide, that of protein O-9 being stimulated more remarkably. Proteins which had been heated in sodium dodecyl sulfate solution did not bind to the peptidoglycan sacculi even in the presence of lipopolysaccharide, while heated lipopolysaccharide stimulated the binding of non-heated proteins. The removal by pronase of the lipoprotein covalently bound to the peptidoglycan sacculi did not change the protein binding ability of the sacculi.  相似文献   

10.
Preparations of purified peptidoglycan of Escherichia coli (i.e., sacculi) were studied by low-angle laser light scattering. Control experiments and theoretical calculations based on the Rayleigh-Gans theory showed that the mean sacculus surface area could be accurately inferred from measurements with our apparatus by using computer routines developed previously. Large changes in the mean saccular surface area resulted from alterations in the stress caused by varying the net charge on the sacculi. The net charge was affected by altering the suspending medium pH, causing carboxyl and amino groups in the peptidoglycan to gain or lose protons, or by acetylation or succinylation of the amino groups. A preponderance of either plus or minus charges caused an expansion of the mean sacculus surface area. The largest increase in area probably represents the elastic limit of the peptidoglycan and was 300% above the area of isoionic sacculi. This degree of expansion is consistent with possible conformations of the intact peptidoglycan structure without necessitating rupture of the wall fabric. Our findings concerning saccular elasticity provide support for the surface stress theory. It provides a mechanism so that bacteria can grow and divide while maintaining turgor pressure, without the necessity of having and using proteins to do the mechanical work.  相似文献   

11.
The peptidoglycan sacculi of surface-grown Cytophaga johnsonae had associated with them a large amoutn of protein (the major species is 50 kDa) whereas sacculi from liquid-grown cells had little or no attached protein. The 50 kDa protein was localized in the outer membrane of liquid-grown cells. A portion of this membrane-derived 50 kDa protein was attached to the peptidoglycan only when the cells made contact with the substratum. Protein synthesis did not appear to be required for attachment as the process was not inhibited by chloramphenicol. Association of the 50 kDa protein with the peptidoglycan in response to cell contact with the substratum is suggested.  相似文献   

12.
The enzyme transglutaminase has been used to label surface proteins of Escherichia coli cytoplasmic membranes by covalently attaching to them a small fluorescent primary amine, dansyl cadaverine. Spheroplasts lacking outer membrane, osmotically lysed vesicles from the spheroplasts, and vesicles made by breaking cells in a French pressure cell were each labeled with transglutaminase and dansyl cadaverine. When the total cytoplasmic membrane proteins of each were examined on sodium dodecyl sulfate gels, three rather different labeling patterns were obtained. Labeling of the respiratory enzyme, nitrate reductase, in the membranes of each of these preparations was also examined. Membrane-bound nitrate reductase contains three subunits: A, B, and C. Dansyl cadaverine labeling of nitrate reductase in the presence of Triton X-100 indicated that subunits A and C could be labeled. When nitrate reductase was isolated from dansyl cadaverine-labeled spheroplasts, none of the subunits was labeled. When nitrate reductase was isolated from French press vesicles, subunit A was labeled and labeling was enhanced by the presence of nitrate during labeling. When nitrate reductase from osmotic vesicles was examined, subunit A was labeled in the presence of nitrate but no labeled subunits appeared when the vesicles were labeled in the absence of nitrate. It was concluded that (i) nitrate reductase is buried in the membrane with subunit A exposed only on the inner surface of the membrane, (ii) subunit C is sufficiently buried within the membrane so that it is inaccessible to transglutaminase, (iii) subunit B is not labeled under any condition, so its location is not known, and (iv) large osmotic vesicles are probably mosaics in which some protein components have been reoriented.  相似文献   

13.
Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with these results. When E. coli sacculi were suspended over a narrow groove that had been etched into a silicon surface and the tip of the atomic force microscope used to depress and stretch the peptidoglycan, an elastic modulus of 2.5 x 10(7) N/m(2) was determined for hydrated sacculi; they were perfectly elastic, springing back to their original position when the tip was removed. Dried sacculi were more rigid with a modulus of 3 x 10(8) to 4 x 10(8) N/m(2) and at times could be broken by the atomic force microscope tip. Sacculi aligned over the groove with their long axis at right angles to the channel axis were more deformable than those with their long axis parallel to the groove axis, as would be expected if the peptidoglycan strands in the sacculus were oriented at right angles to the long cell axis of this gram-negative rod. Polar caps were not found to be more rigid structures but collapsed to the same thickness as the cylindrical portions of the sacculi. The elasticity of intact E. coli sacculi is such that, if the peptidoglycan strands are aligned in unison, the interstrand spacing should increase by 12% with every 1 atm increase in (turgor) pressure. Assuming an unstressed hydrated interstrand spacing of 1.3 nm (R. E. Burge, A. G. Fowler, and D. A. Reaveley, J. Mol. Biol. 117:927-953, 1977) and an internal turgor pressure of 3 to 5 atm (or 304 to 507 kPa) (A. L. Koch, Adv. Microbial Physiol. 24:301-366, 1983), the natural interstrand spacing in cells would be 1.6 to 2.0 nm. Clearly, if large macromolecules of a diameter greater than these spacings are secreted through this layer, the local ordering of the peptidoglycan must somehow be disrupted.  相似文献   

14.
1. Respiratory nitrate reductase of Bacillus licheniformis was extracted from the bacterial membranes by treatment with deoxycholate and purified to a homogeneous state by means of gel chromatography and anion-exchange chromatography. 2. The enzyme (Mr = 193,000, s20, w = 8.6) consists of two subunits, having apparent molecular weight of 150,000 (alpha subunit) and 57,000 (beta subunit), which are present in an equimolar ratio. It does not contain carbohydrate. Ageing of the enzyme appears to result in splitting of the polypeptide chains at specific sites followed by dissociation and reassociation of the digestion products in various combinations. 3. In contrast to Klebsiella aerogenes repiratory nitrate reductase, which is isolated in a tetrameric form that can be reversibly dissociated into a monomeric form by detergents, B. licheniformis nitrate reductase, after isolation, is always present in a monomeric form. This property is related to the difference in membrane localization of the enzyme in the two organisms. 4. B licheniformis nitrate reductase contains 6.9 atoms of non-heme iron, 6.7 atoms of acid-labile sulfide and 0.93 atoms of molybdenum per molecule of enzyme. The molybdenum seems to be part of a low-molecular weight peptide Mo-cofactor) to which it may be bound by interaction with thiol-groups. 5. Antiserum against the native enzyme contains antibodies against both subunits as well as the Mo-cofactor. The Mo-cofactor does not have any antigenic determininants in common with either the alpha or the beta subunit. Also neither subunit cross-reacts with antiserum against the other subunit. Whereas the respiratory nitrate reductases from K. aerogenes and Escherichia coli are immunologically related, the native enzyme from B. licheniformis does not show any cross-reaction with antiserum prepared against either the K. aerogenes or the E. coli enzyme.  相似文献   

15.
Construction in vitro of a cloned nar operon from Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
To clone the nar operon of Escherichia coli without an effective selection procedure for the nar+ phenotype, a strategy utilizing nar::Tn5 mutants was employed. Partial segments of the nar operon containing Tn5 insertions were cloned into plasmid pBR322 by using the transposon resistance character for selection. A hybrid plasmid was constructed in vitro from two of these plasmids and isolated by a procedure that involved screening a population of transformed nar(Ts) mutant TS9A for expression of thermal stable nitrate reductase activity. A detailed restriction site map of the resulting plasmid, pSR95, corresponded closely to the composite restriction endonuclease map deduced for the nar region from maps of the cloned nar::Tn5 fragments. When transformed with pSR95, wild-type strain PK27 overproduced the alpha, beta, and gamma subunits of nitrate reductase, although nitrate reductase activity was only slightly increased. The alpha and beta subunits were overproduced about 5- to 10-fold and accumulated mostly as an inactive aggregate in the cytoplasm; the gamma subunit overproduction was detected as a threefold increase in the specific content of cytochrome b555 in the membrane fraction. Functional nitrate reductase and the cytochrome spectrum associated with functional nitrate reductase were restored in the nar::Tn5 mutant EE1 after transformation with pSR95. Although the specific activity of nitrate reductase in this case was less than that of the wild type, both the alpha and beta subunits appeared to be overproduced in an inactive form. In both strains PK27(pSR95) and EE1(pSR95), the formation of nitrate reductase activity and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the demonstration that pSR95 contains a functional nor operon that encodes the alpha, beta, gamma subunits of nitrate reductase.  相似文献   

16.
Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called ‘naked glycans’). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6‐anhydro N‐acetylmuramic acid ends. RlpA did not degrade sacculi from wild‐type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.  相似文献   

17.
The localization of the N- and C-terminal regions of pigment-binding polypeptides of the bacterial photosynthetic apparatus of Rhodobacter sphaeroides was investigated by proteinase K treatment of chromatophore and spheroplast-derived vesicles and amino acid sequence determination. Under conditions of proteinase K treatment of chromatophores, which left the in vivo absorption spectrum and the membrane intact, 15 and 46 amino acyl residues from the N-terminal regions of the L and M subunits, respectively, of the reaction center polypeptides were removed. The N termini are therefore exposed on the cytoplasmic surface of the membrane. The C-terminal domain of the light-harvesting B800-850 alpha and B870 alpha polypeptides was found to be exposed on the periplasmic surface of the membrane. A total of 9 and 13 amino acyl residues were cleaved from the B800-850 alpha and B870 alpha polypeptides, respectively, when spheroplasts were treated with proteinase K. The N-terminal regions of the alpha polypeptides were not digested in either membrane preparation and were apparently protected from proteolytic attack. Seven N-terminal amino acyl residues of the B800-850 beta polypeptide were removed after the digestion of chromatophores. C-terminal residues were not removed after the digestion of chromatophores or spheroplasts. The C termini seem to be protected from protease attack by interaction with the membrane. Therefore, the N-terminal regions of the beta polypeptides are exposed on the cytoplasmic membrane surface. The C termini of the beta polypeptides are believed to point to the periplasmic space.  相似文献   

18.
S-layer homology (SLH) module polypeptides were derived from Clostridium josui xylanase Xyn10A, Clostridium stercorarium xylanase Xyn10B, and Clostridium thermocellum scafoldin dockerin binding protein SdbA as rXyn10A-SLH, rXyn10B-SLH, and rSdbA-SLH, respectively. Their binding specificities were investigated using various cell wall preparations. rXyn10A-SLH and rXyn10B-SLH bound to native peptidoglycan-containing sacculi consisting of peptidoglycan and secondary cell wall polymers (SCWP) prepared from these bacteria but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWP, suggesting that SCWP are responsible for binding with SLH modules. In contrast, rSdbA-SLH interacted with HF-EPCS, suggesting that this polypeptide had an affinity for peptidoglycans but not for SCWP. The affinity of rSdbA-SLH for peptidoglycans was confirmed by a binding assay using a peptidoglycan fraction prepared from Escherichia coli cells. The SLH modules of SdbA must be useful for cell surface engineering in bacteria that do not contain SCWP.  相似文献   

19.
Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage.Non Standard Abbreviations SDS sodium dodecylsulfate - EDTA ethylenediaminetetra acetic acid - DNP dinitrophenyl Dedicated to Prof. Dr. Adolf Butenandt on the occasion of his 75th birthday  相似文献   

20.
The sidedness of the respiratory nitrate reductase in the cytoplasmic membrane of Bacillus licheniformis and Klebsiella aerogenes was studied by indirect immunofluorescence and by lactoperoxidase-catalyzed iodination. It was shown that the two subunits (Mr 150000 and 57000, respectively) of nitrate reductase of B. licheniformis are localized on the cytoplasmic side of the membrane, whereas the K. aerogenes enzyme is a transmembrane protein. The different localization of nitrate reductase in the membranes of these organisms may be related to their different r?le in oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号