首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi S  Yao TM  Geng XT  Jiang LF  Liu J  Yang QY  Ji LN 《Chirality》2009,21(2):276-283
New chiral Ru(II) complexes delta and lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) [(bpy = 2,2'-bipyridine; pyip = (2-(1-pyrenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline] were synthesized and characterized by elemental analysis, (1)H NMR, ESI-MS, IR, and CD spectra. Their DNA-binding properties were studied by means of UV-vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of both enantiomer with CT-DNA. Spectroscopy experiments indicated that each of these complexes could interact with the DNA. The DNA-binding of the Delta-enantiomer was stronger than that of Lambda-enantiomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) bound to DNA by intercalation. At the same time, the DNA-photocleavage properties of the complexes were investigated too. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA.  相似文献   

2.
Two pseudopolymorphs, solvates, of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] of unknown structure were obtained following solution of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] in N,N-dimethylacetamide (DMA) or N,N-dimethylformamide (DMF). Low-temperature crystal structures obtained for these solvates revealed that they were ternary aqua DMA and DMF solvates: [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA and [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF. Intermolecular hydrogen bonding interactions account for the formation of these stable DMA and DMF solvates. These pseudopolymorphs contain a centrosymmetric binuclear center with Cu-Cu bond distances ranging from 2.6439(7) to 2.6452(9) A; the coordination sphere of Cu(II) is characterized by one long Cu-O (water) bond length of 2.128(3)-2.135(3) A and four short Cu-O (carboxylate) bonds of 1.949(3)-1.977(3) A. Crystal parameters for the DMA pseudopolymorph: a=10.372(1), b=19.625(2), c=17.967(2) A, beta=97.40(1) degrees , V=3626.8(6) A(3); monoclinic system; space group: P2(1)/a and for the DMF pseudopolymorph: a=10.125(2), b=18.647(3), c=19.616(4) A, alpha=74.38(2)(o), beta=88.18(2)(o), gamma=79.28(2)(o), V=3504(1) A(3); triclinic system; space group: P1. EPR spectra of these solids are identical and show strong antiferromagnetic coupling between the copper atoms, similar to the spectrum obtained for [Cu(2)(II)(niflumate)(4)(DMSO)(2)]. The [Cu(2)(II)(niflumate)(4)(H(2)O)(2)], [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA, [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF, [Cu(2)(II)(niflumate)(4)(DMF)(2)], and[Cu(2)(II)(niflumate)(4)(DMSO)(2)] evidenced protection against maximal electroshock-induced seizures and Psychomotor seizures at various times after treatment, consistent with the well known antiinflammatory activities of Cu chelates, but failed to protect against Metrazol-induced seizures while evidencing some Rotorod Toxicity consistent with a mechanism of action involving sedative activity.  相似文献   

3.
The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.  相似文献   

4.
To model the structural and functional parts of the water oxidizing complex in Photosystem II, a dimeric manganese(II,II) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru(II)(bpy)(3)) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru(II)(bpy)(3) in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru(III)(bpy)(3) from the Mn(2)(II,II) dimer, which then attained the Mn(2)(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn(2)(III,IV) state. Our data indicate that oxidation from the Mn(2)(II,II) state proceeds stepwise via intermediate formation of Mn(2)(II,III) and Mn(2)(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn(2)(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn(2)(III,IV), this suggests that water is essential for the formation of the Mn(2)(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem II, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.  相似文献   

5.
6.
Mononuclear complexes of Cu(II), Ni(II), and Mn(II) with a new Schiff base ligand derived from indoline-2,3-dione and 2-hydroxybenzohydrazide, [Cu(II)(L)(2)], [Ni(II)(L)(2)], and [Mn(II)L.(AcO).2C(2)H(5)OH] [HL=(Z)-2-hydroxy-N'-(2-oxoindolin-3-ylidene)benzohydrazide], have been prepared. The complexes have been structurally characterized by X-ray crystallography. Among the three complexes, the Cu(II) complex had the novel highest antitumor activity.  相似文献   

7.
Four imidazolate-bridged binuclear copper(II)-copper(II) and copper(II)-zinc(II) complexes viz., [(Bipy)(2)Cu-Im-Cu(Bipy)(2)](ClO(4))(3).CH(3)OH, [(Phen)(2)Cu-Im-Cu(Phen)(2)](BF(4))(3).2CH(3)OH, [(Bipy)(2)Cu-Im-Zn(Bipy)(2)](BF(4))(3), and [(Phen)(2)Cu-Im-Zn(Phen)(2)](BF(4))(3), (Bipy=2,2'-Bipyridyl, Phen=1-10-Phenanthroline and Im=imidazolate ion) were synthesized as a possible models for superoxide dismutase (SOD). Complex [(Bipy)(2)Cu-Im-Cu(Bipy)(2)](ClO(4))(3).CH(3)OH has been structurally characterized. This complex crystallizes in the triclinic space group P1, with the unit parameters a=8.88(5) A, b=13.79(17) A, c=20.18(18) A, alpha=76.424(8)(o), beta=85.888(6)(o), gamma=82.213(7). The metal-nitrogen bond length from 1.972-2.273 A and the distance Cu-Cu is 5.92 A. The five-coordinate geometry about the copper(II) ion is square pyramidal. Magnetic moment and electron paramagnetic resonance (e.p.r.) spectral measurements of the homobinuclear complexes have shown an antiferromagnetic exchange interaction. From the e.p.r. and UV-Vis spectral measurement studies, these complexes have been found to be stable (pH 8.5-10.5 for 1, 10.5 for 2,3 and 8.5 for 4). These complexes catalyse the dismutation of superoxide radical (O(2)(-)) at biological pH. All the observations indicate that these complexes act as good possible models for superoxide dismutase.  相似文献   

8.
The individual stereoisomers cis-PtCl(2)(dexrazoxane) and cis-PtCl(2)(levrazoxane) were synthesized and their structures were determined by X-ray crystallography. Dexrazoxane and levrazoxane inhibit cell growth because they are strong catalytic inhibitors of DNA topoisomerase II, whereas cisplatin acts through the formation of DNA cross-links. It was hypothesized that platinum(II) complexes of dexrazoxane and levrazoxane would retain both activities and yield drugs with a dual mode of action. Both cis-PtCl(2)(dexrazoxane) and cis-PtCl(2)(levrazoxane) inhibited Chinese hamster ovary cell growth, but more weakly than dexrazoxane and levrazoxane did. Based on their weak topoisomerase II inhibitory activity, it was concluded that these compounds did not inhibit cell growth by targeting topoisomerase II. A comparison of the conformation of cis-PtCl(2)(dexrazoxane) to that of dexrazoxane bound to the dimer interface of topoisomerase II showed that the highly constrained cis-PtCl(2)(dexrazoxane) was in a highly unfavorable conformation for binding. Neither of the platinum complexes were able to cross-link DNA. Thus the cell growth inhibitory activity of these complexes was also not likely due to any cisplatin-type cross-linking activity.  相似文献   

9.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

10.
The Cu(II) in Cu(H(-2)L) has been postulated to be successively transported to cysteine (Cys) as follows; Cu(H(-2)L) <==> Cu(H(-2)L)(Cys*-) <==> Cu(H(-1)L)(Cys*-) --> Cu(H(-1)L)(Cys-), where Cys*- denotes the monodentate Cys-. N-acetyl-cysteinate (ACys-) complexes Cu(H(-2)L)(ACys-) and Cu(H(-1)L)(ACys-), having similar coordination modes to Cu(H(-2)L)(Cys*-) and Cu(H(-1)L)(Cys*-), respectively, exhibited the S --> Cu(II) charge transfer absorption at 325-355 nm and the d-d absorption at 530-610 nm. A linear interrelation existed between the energies of the CD and d-d absorptions. Cu(H(-2)L)(ACys-) were in rapid equilibrium with Cu(H(-1)L)(ACys-). Upon forming the ternary complex, pK(c2) of the parent Cu(H(-1)L) was raised to more than 1.0. The formation constants (K) of the Cu(H(-1)L)(ACys-) species from Cu(H(-1)L) were bigger than those of Cu(H(-2)L)(ACys-) from Cu(H(-2)L). The linear free-energy relationship existed between the free-energy change (deltaG) and the entropy change (deltaS) for the ternary complex formation. The rate constants (k1+) for the Cu(H(-1)L)(Cys-) formation closely correlated with the K values for Cu(H(-2)L)(ACys-). The ternary complexes containing ACys are considered to be analogous complexes to the intermediates in the transport of Cu(II) from peptides to cysteine.  相似文献   

11.
Ghosh D  Lee KH  Demeler B  Pecoraro VL 《Biochemistry》2005,44(31):10732-10740
Investigators have studied how proteins enforce nonstandard geometries on metal centers to assess the question of how protein structures can define the coordination geometry and binding affinity of an active-site metal cofactor. We have shown that cysteine-substituted versions of the TRI peptide series [AcG-(LKALEEK)(4)G-NH(2)] bind Hg(II) and Cd(II) in geometries that are different from what is normally found with thiol ligands in aqueous solution. A fundamental question has been whether this structural perturbation is due to protein influence or a change in the metal geometry preference. To address this question, we have completed linear free-energy analyses that correlate the association of three-stranded coiled coils in the absence of a metal with the binding affinity of the peptides to the heavy metals, Hg(II) and Cd(II). In this paper, six new members of this family have been synthesized, replacing core leucine residues with smaller and less hydrophobic residues, consequently leading to varying degrees of self-association affinities. At the same time, studies with some smaller and longer sequenced peptides have also been examined. All of these peptides are seen to sequester Hg(II) and Cd(II) in an uncommon trigonal environment. For both metals, the binding is strong with micromolar dissociation constants. For binding of Hg(II) to the peptides, the dissociation constants range from 2.4 x 10(-)(5) M for Baby L12C to 2.5 x 10(-)(9) M for Grand L9C for binding of the third thiolate to a linear Hg(II)(pep)(2) species. The binding of Hg(II) to the peptide Grand L9C is similar in energetics for metal binding in the metalloregulatory protein, mercury responsive (merR), displaying approximately 50% trigonal Hg(II) formation at nanomolar metal concentrations. Approximately, 11 kcal/mol of the Hg(II)(Grand L9C)(3)(-) stability is due to peptide interactions, whereas only 1-4 kcal/mol stabilization results from Hg(II)(RS)(2) binding the third thiolate ligand. This further validates the hypothesis that the favorable tertiary interactions in protein systems such as merR go a long way in stabilizing nonnatural coordination environments in biological systems. Similarly, for the binding of Cd(II) to the TRI family, the dissociation constants range from 1.3 x 10(-)(6) M for Baby L9C to 8.3 x 10(-)(9) M for TRI L9C, showing a similar nature of stable aggregate formation.  相似文献   

12.
Copper complexes of bis(thiosemicarbazone) (Cu(II)(btsc)s) have been studied as potential anti-cancer agents and hypoxia imaging agents. More recently, Cu(II)(btsc)s have been identified as possessing potent neuroprotective properties in cell and animal models of neurodegenerative disease. Despite their broad range of pharmacological activity little is known about how cells traffic Cu(II)(btsc)s and how this relates to potential anti-cancer or neuroprotective outcomes. One method of investigating sub-cellular localization of metal complexes is through confocal fluorescence imaging of the compounds in cells. Previously we harnessed the fluorescence of a pyrene group attached to diacetyl-bis(N4-methylthiosemicarbazonato)copper(ii)) (Cu(II)(atsm)), (Cu(II)L(1)). We demonstrated that Cu(II)L(1) was partially localized to lysosomes in HeLa cancer epithelial cells. Here we extend these studies to map the sub-cellular localization of Cu(II)L(1) in M17 neuroblastoma cells. Treatment of M17 or HeLa cells led to rapid association of the Cu-complex into distinct punctate structures that partially co-localized with lysosomes as assessed by co-localization with Lysotracker and acridine orange. No localization to early or late endosomes, the nucleus or mitochondria was observed. We also found evidence for a limited association of Cu(II)L(1) with autophagic structures, however, this did not account for the majority of the punctate localization of Cu(II)L(1). In addition, Cu(II)L(1) revealed partial localization with ER Tracker and was found to inhibit ER stress induced by tunicamycin. This is the first report to comprehensively characterize the sub-cellular localization of a Cu(II)(atsm) derivative in cells of a neuronal origin and the partial association with lysosome/autophagic structures and the ER may have a potential role in neuroprotection.  相似文献   

13.
Arai MA  Kuraishi M  Arai T  Sasai H 《Chirality》2003,15(1):101-104
New chiral bis(isoxazoline) ligands bearing a spiro[5.5]undecane skeleton were designed and synthesized in five steps from diethyl malonate (3). These ligands showed a coordinating ability to Cu(II) as chiral ligands. A complex of (+)-(M*,S*,R*)-[5.5]-SPRIX 2b and Cu(OTf)(2) catalyzed the conjugate addition of diethyl-zinc to 2-cyclohexenone (8) to give (S)-3-ethyl-cyclohexanone (9) in 93% yield with 54% ee.  相似文献   

14.
Copper(II) and platinum(II) complexes of 2-benzoylpyrrole (2-BZPH) were synthesized and characterized with IR, 1H and 13C NMR spectroscopies and coordination geometry with ligands arranged in transoid fashion. The crystal structure of [Cu(II)(2-BZP)2] was determined by X-ray diffraction. Death of complex treated Jurkat cells was measured by flow cytometry. The bis-chelate complexes [Cu(II)(2-BZP)2] and [Pt(II)(2-BZP)2] adopt square-planar coordination geometry with ligands, arranged in transoid fashion. Concentrations of 1-10 microM Platinum(II) complexes reduced cell survival from 100% to 20%, in contrast to the copper(II) complex which caused no cell death at a concentration of 10 microM. While the Pt(II) complexes may have damaged DNA to induce cell death, treatment with the Cu(II) complex did not induce Jurkat cell death.  相似文献   

15.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

16.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

17.
18.
A series of Zn(II) complexes with cysteinylglycine (CysGly) and histidylserine (HisSer), and of CysGly and histidylphenylalanine (HisPhe) were investigated. Complex stabilities were determined potentiometrically, and binding geometries were probed by means of 1H-NMR spectroscopy, using Co(II) instead of Zn(II) as a spectroscopic marker. The ternary 1:1:1 complexes [Zn(II)(CysGly)(HisSer)] and [Zn(II)(CysGly)(HisPhe)] were shown by UV experiments, fluorescence titration, and gel electrophoresis to intercalate with DNA, and to hydrolytically cleave supercoiled DNA (form-I), partly also circular (form-II) DNA, under physiological conditions (37 degrees, H2O, pH 7.5).  相似文献   

19.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

20.
Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their activities being more than that of the standard anticancer drug, tamoxifen. The [Pt(asme)(2)] complex exhibits a very weak cytotoxicity, whereas [Pt(asbz)(2)] is inactive against leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号