首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The alpha- and beta-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-beta in heterodimer formation with the alpha-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-beta were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of alpha- and beta-subunits. The disulfide peptides Cys (9-57), Cys (34-88) and Cys (38-90) were found to inhibit the alpha/beta recombination whereas the remaining three disulfide peptides viz. Cys (23-72), Cys (26-110) and Cys (93-100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the alpha/beta recombination. Results clearly demonstrate that the disulfide bonds Cys(9)-Cys(57), Cys(34)-Cys(88) and Cys(38)-Cys(90) of the beta-subunit of hCG are crucial for heterodimer formation with the alpha-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

2.
Follicle-stimulating hormone (FSH) is a heterodimeric glycoprotein hormone secreted by the anterior pituitary. It plays a very important role in folliculogenesis in females and is responsible for spermatogenesis in males. The alpha-subunit which is common within a species and the beta-subunit which is hormone-specific are held together by noncovalent association. This association is very essential for the biological activity of the hormone. Each of these subunits are highly cross-linked by disulfide bonds which appear to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This study was initiated to delineate the role of the disulfide bonds of hFSH beta in receptor binding of the hormone. Five intermolecular and one intramolecular disulfide peptides corresponding to the disulfide bonds found in hFSH beta were synthesized and screened along with their linear counterparts, for their ability to competitively inhibit the radiolabelled [125I]hFSH from binding to the FSH receptor containing membranes from the testis of immature rats. The disulfide peptides Cys28-Cys82 and Cys32-Cys84 were found to be the most potent in inhibiting radiolabelled hFSH from binding to its receptor. The results suggest the involvement of the regions around disulfide bonds Cys28-Cys82 and Cys32-Cys84 in receptor binding of the hormone. The studies also suggest the involvement of beta L2 and beta L3 loop regions in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hFSH.  相似文献   

3.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The α- and β-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-β in heterodimer formation with the α-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-β were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of α- and β-subunits. The disulfide peptides Cys (9–57), Cys (34–88) and Cys (38–90) were found to inhibit the α/β recombination whereas the remaining three disulfide peptides viz. Cys (23–72), Cys (26–110) and Cys (93–100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the α/β recombination. Results clearly demonstrate that the disulfide bonds Cys9–Cys57, Cys34–Cys88 and Cys38–Cys90 of the β-subunit of hCG are crucial for heterodimer formation with the α-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

4.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

5.
Maurotoxin (MTX) is a 34-amino acid polypeptide cross-linked by four disulfide bridges that has been isolated from the venom of the scorpion Scorpio maurus palmatus and characterized. Maurotoxin competed with radiolabeled apamin and kaliotoxin for binding to rat brain synaptosomes and blocked K+ currents from Kv1 channel subtypes expressed in Xenopus oocytes. Structural characterization of the synthetic toxin identified half-cystine pairings at Cys3-Cys24, Cys9-Cys29, Cys13-Cys19 and Cys31-Cys34 This disulfide bridge pattern is unique among known scorpion toxins, particularly the existence of a C-terminal '14-membered disulfide ring' (i.e. cyclic domain 31-34), We therefore studied structure-activity relationships by investigating the structure and pharmacological properties of synthetic MTX peptides either modified at the C-terminus ?i.e. MTX(1-29), [Abu31,34]-MTX and [Cys31,34, Tyr32]D-MTX) or mimicking the cyclic C-terminal domain [i.e. MTX(31-34)]. Unexpectedly, the absence of a disulfide bridge Cys31-Cys34 in [Abu 31,34]-MTX and MTX(1-29) resulted in MTX-unrelated half-cystine pairings of the three remaining disulfide bridges for the two analogs, which is likely to be responsible for their inactivity against Kv1 channel subtypes. Cyclic MTX(31-34) was also biologically inactive. [Cys31,34, Tyr32]D-MTX, which had a 'native', MTX-related, disulfide bridge organization, but a D-residue-induced reorientation of the C-terminal disulfide bridge, was potent at blocking the Kv1.1 channel. This peptide-induced Kv1.1 blockage was voltage-dependent (a property not observed for MTX), maximal in the low depolarization range and associated with on-rate changes in ligand binding. Thus, the cyclic C-terminal domain of MTX seems to be crucial for recognition of Kv1.3, and to a lesser extent, Kv1.2 channels and it may contribute to the stabilization and strength of the interaction between the toxin and the Kv1.1 channel.  相似文献   

6.
A gene fragment encoding the extracellular domain of the human growth hormone (hGH) receptor from liver was cloned into a plasmid under control of the Escherichia coli alkaline phosphatase promoter and the heat-stable enterotoxin (StII) signal peptide sequence. Strains of E. coli expressing properly folded hGH binding protein were identified by blotting colonies with 125I-hGH. The E. coli strain capable of highest expression (KS330) secreted 10 to 20 mg/liter of culture of properly processed and folded hGH receptor fragment into the periplasmic space. The protein was purified to near homogeneity in 70 to 80% yield (in tens of milligram amounts) using ammonium sulfate precipitation, hGH affinity chromatography, and gel filtration. The unglycosylated extracellular domain of the hGH receptor has virtually identical binding properties compared to its natural glycosylated counterpart isolated from human serum, suggesting glycosylation is not important for binding of hGH. The extracellular binding domain codes for 7 cysteines, and we show that six of them form three disulfide bonds. Peptide mapping studies show these disulfides are paired sequentially to produce short loops (10-15 residues long) as follows: Cys38-Cys48, Cys83-Cys94, and Cys108-Cys122. Cys241 is unpaired, and mutagenic analysis shows that the extreme carboxyl end of the receptor fragment (including Cys241) is not essential for folding or binding of the protein to hGH. High level expression of this receptor binding domain and its homologs in E. coli will greatly facilitate their detailed biophysical and structural analysis.  相似文献   

7.
The disulfide bond structure of the extracellular domain of rat atrial natriuretic peptide (ANP) receptor (NPR-ECD) has been determined by mass spectrometry (MS) and Edman sequencing. Recombinant NPR-ECD expressed in COS-1 cells and purified from the culture medium binds ANP with as high affinity as the natural ANP receptor. Reaction with iodoacetic acid yielded no S-carboxymethylcysteine, indicating that all six Cys residues in NPR-ECD are involved in disulfide bonds. Electrospray ionization MS of NPR-ECD deglycosylated by peptide-N-glycosidase F gave a molecular mass of 48377.5+/-1.6 Da, which was consistent with the presence of three disulfide bonds. Liquid chromatography MS analysis of a lysylendopeptidase digest yielded three cystine-containing fragments with disulfide bonds Cys(60)-Cys(86), Cys(164)-Cys(213) and Cys(423)-Cys(432) based on their observed masses. These bonds were confirmed by Edman sequencing of each of the three fragments. No evidence for an inter-molecular disulfide bond was found. The six Cys residues in NPR-ECD, forming a 1-2, 3-4, 5-6 disulfide pairing pattern, are strictly conserved among A-type natriuretic peptide receptors and are similar in B-type receptors. We found that in other families of guanylate cyclase-coupled receptors, the Cys residues involved in 1-2 and 5-6 disulfide pairs are conserved in nearly all, suggesting an important contribution of these disulfide bonds to the receptor's structure and function.  相似文献   

8.
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.  相似文献   

9.
The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.  相似文献   

10.
F Li  S Liang 《Peptides》1999,20(9):1027-1034
The positions of the disulfide bonds of Selenocosmia huwena lectin-I (SHL-I) from the venom of the Chinese bird spider S. huwena have been determined. The existence of three disulfide bonds in the native SHL-I was proved by matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis. To map the disulfide bonds, native SHL-I was proteolytically digested. The resulting peptides were separated by reverse phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis indicated the presence of one disulfide bond Cys7-Cys19. The partially reduced peptides by using Tris-(2-carboxyethyl)-phosphine at pH 3.0 were purified by reverse phase high-performance liquid chromatography. Four M Guanidine-HCl was found to increase the yields of partially reduced peptides prominently. The free thiols were carboxamidomethlate by iodoacetamide. The specific location of another disulfide bond Cys2-Cys14 was proved by comparing N-terminal sequencing analysis of the partially reduced and alkylated SHL-I with that of the intact peptide. Finally, the three disulfide linkage of SHL-I could be assigned as Cys2-Cys14, Cys7-Cys19, Cys13-Cys26.  相似文献   

11.
Murine interleukin 6 (mIL-6) has been synthesized as a fusion protein using a lac operon inducible plasmid in Escherichia coli. The first 8 amino acids are from the N-terminus of bacterial beta-galactosidase and the last 175 amino acids are from residue number 12 to the end of native mIL-6. This fusion protein is equipotent with the native molecule in the hybridoma growth factor assay and has comparable receptor binding characteristics. The two disulfide bridges in mIL-6 have been identified by Staphylococcus aureus V8 protease peptide mapping and Edman degradation of cystine-containing peptides. It has been shown that there are disulfide bonds between Cys46-Cys52 and Cys75-Cys85.  相似文献   

12.
The locations of the three disulfide bonds of eclosion hormone (EH) isolated from Manduca sexta were assigned by sequence analysis of thermolysin fragments and by comparison of a key heterodimeric fragment to regiospecifically synthesized parallel and antiparallel isomers. We elucidated the complete structure of Manduca EH as a 62-residue peptide which has three disulfide bonds between Cys14-Cys38, Cys18-Cys34, and Cys21-Cys49.  相似文献   

13.
Chen H  Zhang G  Zhang Y  Dong Y  Yang K 《Biochemistry》2000,39(40):12140-12148
Prochymosin (chymosin) contains three disulfide bonds: Cys45-Cys50, Cys206-Cys210, and Cys250-Cys283. We have demonstrated that Cys250-Cys283 is indispensable for correct refolding of prochymosin, whereas Cys45-Cys50 is dispensable but has some contribution to the stability and substrate specificity of the enzyme. Here, we report the results about the functions of Cys206-Cys210 by site-directed mutagenesis studies. In a glutathione redox system C206A/C210A mutant exhibited oxidative refolding kinetics and efficiency ( approximately 40% reactivation) similar to those of the wild-type prochymosin, indicating that Cys206-Cys210 is also dispensable for refolding. However, C206S/C210S and single-site mutants (C210A, C210S, and C206A) showed only about 3 and 0-0.4% reactivation, respectively. This is quite different from the Cys45-Cys50 deficient mutants (C45A, C50A, C45A/C50A, C45D, C50S, C45D/C50S, C45A/C50S), which have comparable refolding efficiencies, implying that the substituents at position 206 and 210 play more important role in determining correct refolding than those at position 45 and 50. Urea-induced denaturation and fluorescence quenching studies indicated that the prochymosin mutants C206A/C210A and C206S/C210S were 2.1 and 4.8 kJ/mol less stable than prochymosin and some tryptophan residue in the mutated molecules was less exposed. However, the wild-type and mutant prochymosins shared similar far-UV CD and fluorescence emission spectra and similar specific potential activity, suggesting that the overall conformation was maintained after mutation. Activity assay and kinetic analysis revealed that mutation did not change the specific milk-clotting activity significantly but resulted in an increase in K(m) and k(cat) toward a hexapeptide substrate. On the basis of the above-mentioned perturbance of tryptophanyl microenvironment and the three-dimensional structure of chymosin, we proposed that deletion of Cys206-Cys210 may induce a propagated conformational change, resulting in a perturbance of the local conformation around active-site cleft and in turn, an alteration of the substrate specificity.  相似文献   

14.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

15.
The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35–40°C for 24–48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5. for 6 h and at 50°C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Certain disulfide bonds present in leucocyte membrane proteins are labile and can be reduced in inflammation. This can cause structural changes that result in downstream functional effects, for example, in integrin activation. Recent studies have shown that a wide range of membrane proteins have labile disulfide bonds including CD132, the common gamma chain of the receptors for several cytokines including interleukin-2 and interleukin-4 (IL-2 and IL-4). The Cys(183)-Cys(232) disulfide bond in mouse CD132 is susceptible to reduction by enzymes such as thioredoxin (TRX), gamma interferon-inducible lysosomal thiolreductase and protein disulfide isomerase, which are commonly secreted during immune activation. The Cys(183)-Cys(232) disulfide bond is also reduced in an in vivo lipopolysaccharide (LPS)-induced acute model of inflammation. Conditions that lead to the reduction of the Cys(183)-Cys(232) disulfide bond in CD132 inhibit proliferation of an IL-2-dependent T cell clone and concomitant inhibition of the STAT-5 signalling pathway. The same reducing conditions had no effect on the proliferation of an IL-2-independent T cell clone, nor did they reduce disulfide bonds in IL-2 itself. We postulate that reduction of the Cys(183)-Cys(232) disulfide in CD132 inhibits IL-2 binding to the receptor complex. Published data show that the Cys(183)-Cys(232) disulfide bond is exposed at the surface of CD132 and in close contact with IL-2 and IL-4 in their respective receptor complexes. In addition, mutants in these Cys residues in human CD132 lead to immunodeficiency and loss of IL-2 binding. These results have wider implications for the regulation of cytokine receptors in general, as their activity can be modulated by a 'redox regulator' mechanism caused by the changes in the redox environment that occur during inflammation and activation of the immune system.  相似文献   

17.
SP-40,40, a human plasma protein, is a modulator of the membrane attack complex formation of the complement system as well as a subcomponent of high-density lipoproteins. In the present study, the positions of the disulfide bonds in SP-40,40 were determined. SP-40,40 was purified from human seminal plasma by affinity chromatography using an anti-SP-40,40 monoclonal antibody and reversed-phase, high-performance liquid chromatography (HPLC). The protein was digested with trypsin and the fragments were separated by reversed-phase HPLC. The peptides containing disulfide bonds were fluorophotometrically detected with 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The peptides containing more than two disulfide bonds were further digested with Staphylococcus aureus V8 protease and lysylendopeptidase, and the fragments were isolated by HPLC. The amino acid compositions and the amino acid sequences of the peptides containing only a disulfide bond were determined. Disulfide bonds thus determined were between Cys58(alpha)-Cys107(beta), Cys68(alpha)-Cys99(beta), Cys75(alpha)-Cys94(beta), and Cys86(alpha)-Cys80(beta). Since there was no free sulfhydryl groups in the SP-40,40 molecule, Cys78(alpha) and Cys91(beta) should also be linked by a disulfide bond. It is notable that all of the disulfide bonds in SP-40,40 are not only formed by inter-chain pairing, but also appear to form an antiparallel ladder-like structure between the two chains. The unique structure could be related to the functions of SP-40,40.  相似文献   

18.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

19.
The N-terminal extracellular parts of human G-protein coupled receptor class B, for example, receptors for secretin, glucagon, or parathyroid hormone, are involved in ligand binding. To obtain structural and functional information on the N-terminal receptor fragment of human parathyroid hormone receptor 1 (PTHR1), the truncated receptor was expressed in the cytosol of Escherichia coli in the form of inclusion bodies. Oxidative refolding of inclusion body material resulted in stable, soluble, monomeric protein. Ligand binding was proved by surface plasmon resonance spectroscopy and isothermal titration calorimetry. Refolded receptor fragment was able to bind parathyroid hormone with an apparent dissociation constant of 3-5 microM. Far-UV circular dichroism spectra showed that the refolded polypeptide contained approximately 25% alpha-helical and 23% beta-sheet secondary structures. Analysis of the disulfide bond pattern of the refolded receptor fragment revealed disulfide bonds between Cys170 and Cys131, Cys148 and Cys108, and Cys117 and Cys48. These results demonstrate that the extracellular N-terminal domain of the parathyroid hormone receptor (PTHR1) possesses a well-defined, stable conformation, which shows a significant ligand binding activity.  相似文献   

20.
Feng YH  Saad Y  Karnik SS 《FEBS letters》2000,484(2):133-138
Dithiothreitol (DTT) treatment of angiotensin II (Ang II) type 2 (AT(2)) receptor potentiates ligand binding, but the underlying mechanism is not known. Two disulfide bonds proposed in the extracellular domain were examined in this report. Based on the analysis of ligand affinity of cysteine (Cys, C) to alanine (Ala, A) substitution mutants, we provide evidence that Cys(35)-Cys(290) and Cys(117)-Cys(195) disulfide bonds are formed in the wild-type AT(2) receptor. Disruption of the highly conserved Cys(117)-Cys(195) disulfide bond linking the second and third extracellular segments leads to inactivation of the receptor. The Cys(35)-Cys(290) bond is highly sensitive to DTT. Its breakage results in an increased binding affinity for both Ang II and the AT(2) receptor-specific antagonist PD123319. Surprisingly, in the single Cys mutants, C35A and C290A, a labile population of receptors is produced which can be re-folded to high-affinity state by DTT treatment. These results suggest that the free -SH group of Cys(35) or Cys(290) competes with the disulfide bond formation between Cys(117) and Cys(195). This Cys-disulfide bond exchange results in production of the inactive population of the mutant receptors through formation of a non-native disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号