首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
Li C  Hung Wong W 《Genome biology》2001,2(8):research0032.1-research003211

Background

A model-based analysis of oligonucleotide expression arrays we developed previously uses a probe-sensitivity index to capture the response characteristic of a specific probe pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it as a measure of accuracy. Here we investigate the stability of the probe-sensitivity index across different tissue types, the reproducibility of results in replicate experiments, and the use of MBEI in perfect match (PM)-only arrays.

Results

Probe-sensitivity indexes are stable across tissue types. The target gene's presence in many arrays of an array set allows the probe-sensitivity index to be estimated accurately. We extended the model to obtain expression values for PM-only arrays, and found that the 20-probe PM-only model is comparable to the 10-probe PM/MM difference model, in terms of the expression correlations with the original 20-probe PM/MM difference model. MBEI method is able to extend the reliable detection limit of expression to a lower mRNA concentration. The standard errors of MBEI can be used to construct confidence intervals of fold changes, and the lower confidence bound of fold change is a better ranking statistic for filtering genes. We can assign reliability indexes for genes in a specific cluster of interest in hierarchical clustering by resampling clustering trees. A software dChip implementing many of these analysis methods is made available.

Conclusions

The model-based approach reduces the variability of low expression estimates, and provides a natural method of calculating expression values for PM-only arrays. The standard errors attached to expression values can be used to assess the reliability of downstream analysis.  相似文献   

4.
A new summarization method for Affymetrix probe level data   总被引:3,自引:0,他引:3  
MOTIVATION: We propose a new model-based technique for summarizing high-density oligonucleotide array data at probe level for Affymetrix GeneChips. The new summarization method is based on a factor analysis model for which a Bayesian maximum a posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. Thereafter, the RNA concentration is estimated from the model. In contrast to previous methods our new method called 'Factor Analysis for Robust Microarray Summarization (FARMS)' supplies both P-values indicating interesting information and signal intensity values. RESULTS: We compare FARMS on Affymetrix's spike-in and Gene Logic's dilution data to established algorithms like Affymetrix Microarray Suite (MAS) 5.0, Model Based Expression Index (MBEI), Robust Multi-array Average (RMA). Further, we compared FARMS with 43 other methods via the 'Affycomp II' competition. The experimental results show that FARMS with default parameters outperforms previous methods if both sensitivity and specificity are simultaneously considered by the area under the receiver operating curve (AUC). We measured two quantities through the AUC: correctly detected expression changes versus wrongly detected (fold change) and correctly detected significantly different expressed genes in two sets of arrays versus wrongly detected (P-value). Furthermore FARMS is computationally less expensive then RMA, MAS and MBEI. AVAILABILITY: The FARMS R package is available from http://www.bioinf.jku.at/software/farms/farms.html. SUPPLEMENTARY INFORMATION: http://www.bioinf.jku.at/publications/papers/farms/supplementary.ps  相似文献   

5.
6.
7.
SUM: a new way to incorporate mismatch probe measurements   总被引:3,自引:0,他引:3  
Huang S  Wang Y  Chen P  Qian HR  Yeo A  Bemis K 《Genomics》2004,84(4):767-777
  相似文献   

8.
Gene expression analysis by means of microarrays is based on the sequence-specific binding of RNA to DNA oligonucleotide probes and its measurement using fluorescent labels. The binding of RNA fragments involving sequences other than the intended target is problematic because it adds a chemical background to the signal, which is not related to the expression degree of the target gene. The article presents a molecular signature of specific and nonspecific hybridization with potential consequences for gene expression analysis. We analyzed the signal intensities of perfect match (PM) and mismatch (MM) probes of GeneChip microarrays to specify the effect of specific and nonspecific hybridization. We found that these events give rise to different relations between the PM and MM intensities as function of the middle base of the PM, namely a triplet-like (C > G approximately T > A > 0) and a duplet-like (C approximately T > 0 > G approximately A) pattern of the PM-MM log-intensity difference upon binding of specific and nonspecific RNA fragments, respectively. The systematic behavior of the intensity difference can be rationalized on the level of basepairings of DNA/RNA oligonucleotide duplexes in the middle of the probe sequence. Nonspecific binding is characterized by the reversal of the central Watson-Crick (WC) pairing for each PM/MM probe pair, whereas specific binding refers to the combination of a WC and a self-complementary (SC) pairing in PM and MM probes, respectively. The Gibbs free energy contribution of WC pairs to duplex stability is asymmetric for purines and pyrimidines of the PM and decreases according to C > G approximately T > A. SC pairings on the average only weakly contribute to duplex stability. The intensity of complementary MM introduces a systematic source of variation which decreases the precision of expression measures based on the MM intensities.  相似文献   

9.
Summaries of Affymetrix GeneChip probe level data   总被引:9,自引:0,他引:9  
High density oligonucleotide array technology is widely used in many areas of biomedical research for quantitative and highly parallel measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology each gene is typically represented by a set of 11–20 pairs of probes. In order to obtain expression measures it is necessary to summarize the probe level data. Using two extensive spike-in studies and a dilution study, we developed a set of tools for assessing the effectiveness of expression measures. We found that the performance of the current version of the default expression measure provided by Affymetrix Microarray Suite can be significantly improved by the use of probe level summaries derived from empirically motivated statistical models. In particular, improvements in the ability to detect differentially expressed genes are demonstrated.  相似文献   

10.
An enormous amount of microarray data has been collected and accumulated in public repositories. Although some of the depositions include raw and processed data, significant parts of them include processed data only. If we need to combine multiple datasets for specific purposes, the data should be adjusted prior to use to remove bias between the datasets. We focused on a GeneChip platform and a pre-processing method, RMA, and examined simple quantile correction as the post-processing method for integration. Integration of the data pre-processed by RMA was evaluated using artificial spike-in datasets and real microarray datasets of atopic dermatitis and lung cancer. Studies using the spike-in datasets show that the quantile correction for data integration reduces the data quality at some extent but it should be acceptable level. Studies using the real datasets show that the quantile correction significantly reduces the bias. These results show that the quantile correction is useful for integration of multiple datasets processed by RMA, and encourage effective use of public microarray data.  相似文献   

11.
12.

Background  

Microarray technology is a high-throughput method for measuring the expression levels of thousand of genes simultaneously. The observed intensities combine a non-specific binding, which is a major disadvantage with microarray data. The Affymetrix GeneChip assigned a mismatch (MM) probe with the intention of measuring non-specific binding, but various opinions exist regarding usefulness of MM measures. It should be noted that not all observed intensities are associated with expressed genes and many of those are associated with unexpressed genes, of which measured values express mere noise due to non-specific binding, cross-hybridization, or stray signals. The implicit assumption that all genes are expressed leads to poor performance of microarray data analyses. We assume two functional states of a gene - expressed or unexpressed - and propose a robust method to estimate gene expression states using an order relationship between PM and MM measures.  相似文献   

13.

Background  

Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets.  相似文献   

14.
MOTIVATION: Human clinical projects typically require a priori statistical power analyses. Towards this end, we sought to build a flexible and interactive power analysis tool for microarray studies integrated into our public domain HCE 3.5 software package. We then sought to determine if probe set algorithms or organism type strongly influenced power analysis results. RESULTS: The HCE 3.5 power analysis tool was designed to import any pre-existing Affymetrix microarray project, and interactively test the effects of user-defined definitions of alpha (significance), beta (1-power), sample size and effect size. The tool generates a filter for all probe sets or more focused ontology-based subsets, with or without noise filters that can be used to limit analyses of a future project to appropriately powered probe sets. We studied projects from three organisms (Arabidopsis, rat, human), and three probe set algorithms (MAS5.0, RMA, dChip PM/MM). We found large differences in power results based on probe set algorithm selection and noise filters. RMA provided high sensitivity for low numbers of arrays, but this came at a cost of high false positive results (24% false positive in the human project studied). Our data suggest that a priori power calculations are important for both experimental design in hypothesis testing and hypothesis generation, as well as for the selection of optimized data analysis parameters. AVAILABILITY: The Hierarchical Clustering Explorer 3.5 with the interactive power analysis functions is available at www.cs.umd.edu/hcil/hce or www.cnmcresearch.org/bioinformatics. CONTACT: jseo@cnmcresearch.org  相似文献   

15.
Sequence dependence of cross-hybridization on short oligo microarrays   总被引:9,自引:3,他引:6  
One of the critical problems in the short oligo microarray technology is how to deal with cross-hybridization that produces spurious data. Little is known about the details of cross-hybridization effect at molecular level. Here, we report a free energy analysis of cross-hybridization on short oligo microarrays using data from a spike-in study. Our analysis revealed that cross-hybridization on the arrays is mostly caused by oligo fragments with a run of 10–16 nt complementary to the probes. Mismatches were estimated to be energetically much more costly in cross-hybridization than that in gene-specific hybridization, implying that the sources of cross-hybridization must be very different between a PM–MM probe pair. Consequently, it is unreliable to use MM probe signal to track cross-hybridizing signal on a corresponding PM probe. Our results also showed that the oligo fragments tend to bind to the 5′ ends of the probes, and are rarely seen at the 3′ ends. These results are useful for microarray design and data analysis.  相似文献   

16.
17.
18.
Background adjustment is an essential stage in analyzing DNA microarrays. Discriminating expressed genes from unexpressed ones (expression detection), and estimating the expression levels of weakly expressed genes, critically depend on accurate treatment of the background intensity. Current methods for background adjustment either do not deal with nonspecific hybridization or strongly depend on the reliability of control probes. Existing model-based methods have limited accuracy. A new platform-independent background adjustment algorithm is presented. The algorithm relies on the deconvoluted experimental signal distribution for evaluating the expression probability and adjusting the background of each probe. Considering expression detection, it is shown, for two-channels cDNA arrays and for the Affymetrix GeneChip platform, that the algorithm performs at least as good or better than control-probes-based algorithms. For the Affymetrix GeneChip arrays, it is further shown that the algorithm outperforms the robust multiarray (RMA) expression measure in estimating genomewide expression levels.  相似文献   

19.
Sequence biases in large scale gene expression profiling data   总被引:1,自引:2,他引:1  
We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, ‘Classic’ Massively Parallel Signature Sequencing (MPSS) and ‘Signature’ MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content sensitivity. The relationship between this experimental error and the G+C content of the probe set or tag that identifies each gene influences whether the gene is detected and, if detected, the level of gene expression measured. LongSAGE has the least bias, while Signature MPSS shows a strong bias to G+C rich tags and Affymetrix data show different bias depending on the data processing method (MAS 5.0, RMA or GC-RMA). The bias in the Affymetrix data primarily impacts genes expressed at lower levels. Despite the larger sampling of the MPSS library, SAGE identifies significantly more genes (60% more RefSeq genes in a single comparison).  相似文献   

20.
The tumor suppressor DBC2 belongs to a previously uncharacterized gene family, RHOBTB (Bric-a-brac, Tramtrack, Broad-complex). The biological roles of RHOBTB proteins, including DBC2, remain unclear. To understand the physiological functions of DBC2, a global approach was applied. Expression of DBC2 was manipulated in HeLa cells and RNA profiling of the cells was performed by microarray analyses. DBC2 was introduced into HeLa cells by a mammalian expression vector with a constitutive promoter. DBC2 knockdown was achieved by RNA interference with small interfering RNA. RNA profiles of these samples were performed by microarray analysis using Affymetrix GeneChip HG-U133A 2.0. The microarray data were analyzed by Microarray Suite 5.0 (MAS 5.0) and Robust Multichip Average (RMA). A list of genes whose expression was significantly altered (p<0.001) was generated and overlaid onto a cellular pathway map in the Ingenuity Systems' Pathway Knowledge Base (Winter'04 Release). Two networks were found to react substantially to DBC2 expression; namely, more than half of participating genes are affected. One of the networks regulates cell growth through cell-cycle control and apoptosis. The other network is related to cytoskeleton and membrane trafficking. Our findings suggest that the biological roles of DBC2 are related directly and/or indirectly to these cellular machineries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号