首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently identified, fungi-specific alternative pathway of glutathione degradation requires the participation of three genes, DUG1, DUG2, and DUG3. Dug1p has earlier been shown to function as a Cys-Gly-specific dipeptidase. In the present study, we describe the characterization of Dug2p and Dug3p. Dug3p has a functional glutamine amidotransferase (GATase) II domain that is catalytically important for glutathione degradation as demonstrated through mutational analysis. Dug2p, which has an N-terminal WD40 and a C-terminal M20A peptidase domain, has no peptidase activity. The previously demonstrated Dug2p-Dug3p interaction was found to be mediated through the WD40 domain of Dug2p. Dug2p was also shown to be able to homodimerize, and this was mediated by its M20A peptidase domain. In vitro reconstitution assays revealed that Dug2p and Dug3p were required together for the cleavage of glutathione into glutamate and Cys-Gly. Purification through gel filtration chromatography confirmed the formation of a Dug2p-Dug3p complex. The functional complex had a molecular weight that corresponded to (Dug2p-Dug3p)(2) in addition to higher molecular weight oligomers and displayed Michaelis-Menten kinetics. (Dug2p-Dug3p)(2) had a K(m) for glutathione of 1.2 mm, suggesting a novel GATase enzyme that acted on glutathione. Dug1p activity in glutathione degradation was found to be restricted to its Cys-Gly peptidase activity, which functioned downstream of the (Dug2p-Dug3p)(2) GATase. The DUG2 and DUG3 genes, but not DUG1, were derepressed by sulfur limitation. Based on these studies and the functioning of GATases, a mechanism is proposed for the functioning of the Dug proteins in the degradation of glutathione.  相似文献   

2.
3.
GSH metabolism in yeast is carried out by the γ-glutamyl cycle as well as by the DUG complex. One of the last steps in the γ-glutamyl cycle is the cleavage of Cys-Gly by a peptidase to the constitutent amino acids. Saccharomyces cerevisiae extracts carry Cys-Gly dipeptidase activity, but the corresponding gene has not yet been identified. We describe the isolation and characterization of a novel Cys-Gly dipeptidase, encoded by the DUG1 gene. Dug1p had previously been identified as part of the Dug1p-Dug2p-Dug3p complex that operates as an alternate GSH degradation pathway and has also been suggested to function as a possible di- or tripeptidase based on genetic studies. We show here that Dug1p is a homodimer that can also function in a Dug2-Dug3-independent manner as a dipeptidase with high specificity for Cys-Gly and no activity toward tri- or tetrapeptides in vitro. This activity requires zinc or manganese ions. Yeast cells lacking Dug1p (dug1Δ) accumulate Cys-Gly. Unlike all other Cys-Gly peptidases, which are members of the metallopeptidase M17, M19, or M1 families, Dug1p is the first to belong to the M20A family. We also show that the Dug1p Schizosaccharomyces pombe orthologue functions as the exclusive Cys-Gly peptidase in this organism. The human orthologue CNDP2 also displays Cys-Gly peptidase activity, as seen by complementation of the dug1Δ mutant and by biochemical characterization, which revealed a high substrate specificity and affinity for Cys-Gly. The results indicate that the Dug1p family represents a novel class of Cys-Gly dipeptidases.GSH is a thiol-containing tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) present in almost all eukaryotes (barring a few protozoa) and in a few prokaryotes (1). In the cell, glutathione exists in reduced (GSH) and oxidized (GSSG) forms. Its abundance (in the millimolar range), a relatively low redox potential (-240 mV), and a high stability conferred by the unusual peptidase-resistant γ-glutamyl bond are three of the properties endowing GSH with the attribute of an important cellular redox buffer. GSH also contributes to the scavenging of free radicals and peroxides, the chelation of heavy metals, such as cadmium, the detoxification of xenobiotics, the transport of amino acids, and the regulation of enzyme activities through glutathionylation and serves as a source of sulfur and nitrogen under starvation conditions (2, 3). GSH metabolism is carried out by the γ-glutamyl cycle, which coordinates its biosynthesis, transport, and degradation. The six-step cycle is schematically depicted in Fig. 1 (2).Open in a separate windowFIGURE 1.γ-Glutamyl cycle of glutathione metabolism. γ-Glutamylcysteine synthetase and GSH synthetase carry out the first two steps in glutathione biosynthesis. γ-glutamyltranspeptidase, γ-glutamylcyclotransferase, 5-oxoprolinase, and Cys-Gly dipeptidase are involved in glutathione catabolism. Activities responsible for γ-glutamylcyclotransferase and 5-oxoprolinase have not been detected in S. cerevisiae.In Saccharomyces cerevisiae, γ-glutamyl cyclotransferase and 5-oxoprolinase activities have not been detected, which has led to the suggestion of the presence of an incomplete, truncated form of the γ-glutamyl cycle (4) made of γ-glutamyl transpeptidase (γGT)4 and Cys-Gly dipeptidase and only serving a GSH catabolic function. Although γGT and Cys-Gly dipeptidase activities were detected in S. cerevisiae cell extracts, only the γGT gene (ECM38) has been identified so far. Cys-Gly dipeptidase activity has been identified in humans (5, 6), rats (710), pigs (11, 12), Escherichia coli (13, 14), and other organisms (15, 16), and most of them belong to the M17 or the M1 and M19 metallopeptidases gene families (17).S. cerevisiae has an alternative γGT-independent GSH degradation pathway (18) made of the Dug1p, Dug2p, and Dug3p proteins that function together as a complex. Dug1p also seem to carry nonspecific di- and tripeptidase activity, based on genetic studies (19).We show here that Dug1p is a highly specific Cys-Gly dipeptidase, as is its Schizosaccharomyces pombe homologue. We also show that the mammalian orthologue of DUG1, CNDP2, can complement the defective utilization of Cys-Gly as sulfur source of an S. cerevisiae strain lacking DUG1 (dug1Δ). Moreover, CNDP2 has Cys-Gly dipeptidase activity in vitro, with a strong preference for Cys-Gly over all other dipeptides tested. CNDP2 and its homologue CNDP1 are members of the metallopeptidases M20A family and have been known to carry carnosine (β-alanyl-histidine) and carnosine-like (homocarnosine and anserine) peptidase activity (20, 21). This study thus reveals that the metallopeptidase M20A family represents a novel Cys-Gly peptidase family, since only members of the M19, M1, and M17 family were known to carry this function.  相似文献   

4.
Dug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction. Dug1p exists as dimer and the stoichiometry of peptide-Dug1p complex is 2:1 indicating each monomer in the dimer binds to one peptide. Thermodynamic studies indicate that the free energy change for Dug1p-peptide complex formation is similar (?Gbind ∼ −7.0 kcal/mol) for a variety of peptides of different composition and length (22 peptides). Three-dimensional model of Dug1p is constructed and docking of peptides to the modeled structure suggests that hydrogen bonding to active site residues (E172, E171, and D137) lock the N-terminal of the peptide into the binding site. Dug1p recognizes peptides in a metal independent manner and peptide binding is not sensitive to salts (dlogK/dlog[salt] ∼ 0) over a range of [NaCl] (0.02-0.5 M), [ZnCl2], and [MnCl2] (0-0.5 mM). Our results indicate that promiscuity in peptide binding results from the locking of peptide N-terminus into the active site. These observations were supported by our competitive inhibition activity assays. Dug1p activity towards Cys-Gly peptide is significantly reduced (∼ 70%) in the presence of Glu-Cys-Gly. Therefore, Dug1p can recognize a variety of oligopeptides, but has evolved with post-binding screening potential to hydrolyze Cys-Gly peptides selectively.  相似文献   

5.
A crucial enzyme in the pathway for protein degradation in Escherichia coli is protease La, an ATP-hydrolyzing protease encoded by the lon gene. This enzyme degrades various proteins to small polypeptides containing 10-20 amino acid residues. To learn more about its energy requirement, we determined the number of ATP molecules hydrolyzed by the purified protease for each peptide bond cleaved. The enzyme hydrolyzed about 2 molecules of ATP for each new amino group generated with casein, bovine serum albumin, glucagon, or guanidinated casein as substrates, even though these proteins differ up to 20-fold in size and 3-4 fold in rates of hydrolysis of peptide bonds. Similar values for the stoichiometry (from 1.9 to 2.4) were obtained using fluorescamine or 2,4,6-trinitrobenzene sulfonic acid to estimate the appearance of new amino groups. These values appeared lower at 1 mM than at 10 mM Mg2+. The coupling between ATP and peptide bond hydrolysis appeared very tight. However, when the protease was assayed under suboptimal conditions (e.g. at lower pH or with ADP present), many more ATP molecules (from 3.5 to 12) were consumed per peptide bond cleaved. Our data would indicate that the early steps in protein degradation consume almost as much energy (2 ATPs for each cleavage) as does the formation of peptide bonds during protein synthesis.  相似文献   

6.
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis.  相似文献   

7.
8.
Mouse Spot-1 is a DNA-binding protein with a domain (His-Thr) encoded by p(CA)n repeats. Spot-1 interacts with the nuclear localization signal (NLS) I of p53 through its His-Thr domain. In this study we describe the cloning and expression patterns of a novel gene encoding a protein containing a His-Thr domain, Spot-2. Spot-2 is exclusively expressed in the pituitary from stage E13.5 to E15.5. Mouse Lhx3 plays a critical role during early organogenesis in the pituitary. The Spot-2 gene appears to be a downstream gene of Lhx3. It is suggested that Spot-2 plays important roles in pituitary development.  相似文献   

9.
The PRO1, PRO2, and PRO3 genes were isolated by functional complementation of pro1, pro2, and pro3 (proline-requiring) strains of Saccharomyces cerevisiae. Independent clones with overlapping inserts were isolated from S. cerevisiae genomic libraries in YEp24 (2 microns) and YCp50 (CEN) plasmids. The identity of each gene was determined by gene disruption, and Southern hybridization and genetic analyses confirmed that the bona fide genes had been cloned. Plasmids containing each gene were introduced into known bacterial proline auxotrophs, and the ability to restore proline prototrophy was assessed. Interspecies complementation demonstrated that the S. cerevisiae PRO1 gene encoded gamma-glutamyl kinase, PRO2 encoded gamma-glutamyl phosphate reductase, and PRO3 encoded delta 1-pyrroline-5-carboxylate reductase. The presence of the PRO3 gene on a high-copy-number plasmid in S. cerevisiae caused a 20-fold overproduction of delta 1-pyrroline-5-carboxylate reductase. The PRO2 gene mapped on chromosome XV tightly linked to cdc66, and the PRO3 gene was located on the right arm of chromosome V between HIS1 and the centromere.  相似文献   

10.
gamma-Glutamyltransferase activity was studied in extracts of the cnidarian Hydra attenuata. The binding of gamma-glutamyl peptide analogues to the enzyme was studied by observing their effects on heat denaturation and their inhibition of p-nitroaniline release from gamma-glutamyl p-nitroanilide. Neither position-1 analogues, in which the gamma-glutamyl moiety was changed to a beta-aspartyl (beta-Asp-Abu-Gly) or an alpha-glutamyl (Glu-Abu-Gly) linkage, nor glutamate protected the enzyme against inactivation at 58 degrees C. GSH (reduced glutathione), gamma-Glu-Abu-Gly and gamma-Glu-Met on the other hand did prevent heat denaturation. GSH and analogues of GSH were competitive inhibitors of p-nitroaniline release, but those analogues in which glycine was replaced by 2-aminoisobutyrate, phenylalanine, leucine or tyrosine had Ki values that were approximately five times those of analogues with the cysteine residue replaced.  相似文献   

11.
Gamma-Glutamyl transpeptidase was isolated from sheep kidney cortex as an apparently homogeneous, highly active protein. At optimal pH and in the absence of acceptors, the enzyme catalyzes the release of about 510 mumol of p-nitroaniline per mg protein per min from the model substrate L-gamma-glutamyl-p-nitroanilide. Polyacrylamide gel electrophoresis in a sodium dodecylsulfate buffer system showed the presence of a large (Mr approximately 65000) and a small (Mr approximately 27000) polypeptide chain. Dissociation into two polypeptide chains was also achieved in 8 M urea. Amidination with dimethylsuberimidate produced a crosslinked protein of molecular weight approximately 90000. In the course of this work a convenient procedure was developed for the determination of gamma-glutamyl transpeptidase activity using L[glycine-2-3H]glutathione as the substrate. In this procedure the release of cysteinyl-[2-3H]glycine from glutathione is followed, after separation of the radioactive di-peptide from unreacted glutathione on a small Dowex-1 acetate column. The reactions with gamma-glutamyl-p-nitroanilide and glutathione are both strongly activated by several metal ions (Ca2+, Mg2+, Na+ and K+) and by a number of amino acids and peptide acceptors. The products of the reaction with glutathione were identified as cysteinylglycine, gamma-glutamylglutathione and glutamate. The formation of these products is consistent with the function of gamma-glutamyl transpeptidase in both the gamma-glutamyl transfer reaction and in the hydrolysis of the gamma-glutamyl bond. The activating effect of metal ions in the reaction with glutathione was shown to be dependent on the acceleration of the transfer reaction; the rate of hydrolysis of the gamma-glutamyl bond remaining unchanged.  相似文献   

12.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

13.
Glucocorticoid-suppressible hyperaldosteronism (GSH) is one variety of primary aldosteronism with hypertension and is inherited in an autosomal dominant mode. A recent report has indicated that GSH is caused by a gene duplication arising from unequal crossing over between the two genes, CYP11B1 and CYP11B2, encoding P-450(11 beta) and P-450C18, respectively (Lifton et al. Nature (1992) 355, 262-265). The nucleotide sequence analysis in the present study has demonstrated that unequal crossing over in the chimeric gene formed by the gene duplication occurs within the region from the 3'-portion of exon 4 through the 5'-portion of intron 4 in Australian GSH patients. Namely, the chimeric gene encodes a fused P-450 protein consisting of the amino-terminal side of P-450(11 beta) (encoded by exons 1-4 of CYP11B1) and the carboxyl-terminal side of P-450C18 (encoded by exons 5-9 of CYP11B2). When a cDNA corresponding to the chimeric gene is transfected into COS-7 cells, the fused P-450 protein expressed in the mitochondria exhibits steroid 18-hydroxylase or aldosterone synthase activity. These results provide the molecular genetic basis for the characteristic biochemical phenotype of GSH patients.  相似文献   

14.
The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. Homologues to Ptr2p have been identified in virtually all organisms examined to date and comprise the PTR family of transport proteins. In S. cerevisiae, the expression of PTR2 is highly regulated at the cellular level by complex interactions of many genes, including PTR1, PTR3, CUP9 and SSY1. Oligopeptides, consisting of four to five amino acids, are transported by the 12-14 TMD integral membrane protein Opt1p. Unlike Ptr2p, distribution of this protein appears limited to fungi and plants, and there appears to be three paralogues in S. cerevisiae. This transporter has an affinity for enkephalin, an endogenous mammalian pentapeptide, as well as for glutathione. Although it is known that OPT1 is normally expressed only during sporulation, to date little is known about the genes and proteins involved in the regulation of OPT1 expression.  相似文献   

15.
gamma-Glutamyl transpeptidase (GGT) is the enzyme responsible for breaking the gamma-glutamyl bond between Glu and Cys in glutathione (GSH). We are using this gene family to study GSH degradation in plants. There are four putative GGT genes in Arabidopsis, and one of them, GGT3 (At4g29210), is analyzed in this study. GGT3 is localized to the vacuole based on organelle-targeting programs, subcellular distribution of GFP fusion proteins during transient expression in onion (Allium cepa) epidermal tissues, and its ability to metabolize vacuolar substrates in Arabidopsis plants. While Northern blots and promoter:GUS expression patterns have suggested that GGT3 is transcribed at relatively high levels in all parts of the plant, a comparison of enzyme activities in different organs of wild-type and a ggt3 knockout mutant showed that GGT3 was a major contributor to total GGT activity in roots, but a relatively minor contributor in other tissues. Wild-type Arabidopsis plants treated with monobromobimane (mBB) form a fluorescent GSH-mBB conjugate that is moved into the vacuole and then metabolized to Cys-Gly-mBB and Cys-mBB in that order. The first step is catalyzed by GGT3, and GSH-mBB metabolism is completely blocked in the roots of ggt3 knockout plants. In ggt3 leaves, some GSH-mBB metabolism still proceeds using the apoplastic GGT1. This identifies GGT3 as catalyzing the obligate initial step in GSH conjugate metabolism, and suggests that it has an important role in protecting plants from some xenobiotic chemicals.  相似文献   

16.
17.
18.
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), a key enzyme of sterol synthesis, is an integral membrane protein of the endoplasmic reticulum (ER). In both humans and yeast, HMG-R is degraded at or in the ER. The degradation of HMG-R is regulated as part of feedback control of the mevalonate pathway. Neither the mechanism of degradation nor the nature of the signals that couple the degradation of HMG-R to the mevalonate pathway is known. We have launched a genetic analysis of the degradation of HMG-R in Saccharomyces cerevisiae using a selection for mutants that are deficient in the degradation of Hmg2p, an HMG-R isozyme. The underlying genes are called HRD (pronounced "herd"), for HMG-CoA reductase degradation. So far we have discovered mutants in three genes: HRD1, HRD2, and HRD3. The sequence of the HRD2 gene is homologous to the p97 activator of the 26S proteasome. This p97 protein, also called TRAP-2, has been proposed to be a component of the mature 26S proteasome. The hrd2-1 mutant had numerous pleiotropic phenotypes expected for cells with a compromised proteasome, and these phenotypes were complemented by the human TRAP-2/p97 coding region. In contrast, HRD1 and HRD3 genes encoded previously unknown proteins predicted to be membrane bound. The Hrd3p protein was homologous to the Caenorhabditis elegans sel-1 protein, a negative regulator of at least two different membrane proteins, and contained an HRD3 motif shared with several other proteins. Hrd1p had no full-length homologues, but contained an H2 ring finger motif. These data suggested a model of ER protein degradation in which the Hrd1p and Hrd3p proteins conspire to deliver HMG-R to the 26S proteasome. Moreover, our results lend in vivo support to the proposed role of the p97/TRAP-2/Hrd2p protein as a functionally important component of the 26S proteasome. Because the HRD genes were required for the degradation of both regulated and unregulated substrates of ER degradation, the HRD genes are the agents of HMG-R degradation but not the regulators of that degradation.  相似文献   

19.
Feng WK  Wang L  Lu Y  Wang XY 《The FEBS journal》2011,278(18):3419-3430
In chloroplasts, thiol/disulfide-redox-regulated proteins have been linked to numerous metabolic pathways. However, the biochemical system for disulfide bond formation in chloroplasts remains undetermined. In the present study, we characterized an oxidoreductase, AtVKOR-DsbA, encoded by the gene At4g35760 as a potential disulfide bond oxidant in Arabidopsis. The gene product contains two distinct domains: an integral membrane domain homologous to the catalytic subunit of mammalian vitamin K epoxide reductase (VKOR) and a soluble DsbA-like domain. Transient expression of green fluorescent protein fusion in Arabidopsis protoplasts indicated that AtVKOR-DsbA is located in the chloroplast. The first 45 amino acids from the N-terminus were found to act as a transit peptide targeting the protein to the chloroplast. An immunoblot assay of chloroplast fractions revealed that AtVKOR-DsbA was localized in the thylakoid. A motility complementation assay showed that the full-length of AtVKOR-DsbA, if lacking its transit peptide, could catalyze the formation of disulfide bonds. Among the 10 cysteine residues present in the mature protein, eight cysteines (four in the AtVKOR domain and four in the AtDsbA domain) were found to be essential for promoting disulfide bond formation. The topological arrangement of AtVKOR-DsbA was assayed using alkaline phosphatase sandwich fusions. From these results, we developed a possible topology model of AtVKOR-DsbA in chloroplasts. We propose that the integral membrane domain of AtVKOR-DsbA contains four transmembrane helices, and that both termini and the cysteines involved in catalyzing the formation of disulfide bonds face the oxidative thylakoid lumen. These studies may help to resolve some of the issues surrounding the structure and function of AtVKOR-DsbA in Arabidopsis chloroplasts.  相似文献   

20.
SNF4基因编码的Snf4p具有调节Snf1复合体的蛋白激酶活性功能,根据已知的SNF4基因序列设计引物扩增获得S.cerevisiae YS2的SNF4基因完整序列。序列分析表明,SNF4基因的开放阅读框为969bp,编码322个氨基酸残基。应用生物信息方法预测其理化性质、疏水性、信号肽、亚细胞定位、活性位点及其高级结构。结果表明:Snf4p为具有一定亲水性的非跨膜胞内稳定酸性蛋白,功能结构域为CBS_pair superfamily结构域,二级结构主要由a-螺旋组成,空间结构是由4个CBS结构域构成两个CBS对围绕形成的二聚体。Snf4p的第一个CBS对区域的β片层结构是Snf1p、Sip2p的β发夹结构结合作用区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号