首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of GABA, bicuculline and 5-HT on primary afferents in the isolated spinal cord of the frog Rana ridibunda were studied. Bath application of GABA (1 mM) reduced the primary afferent depolarisation (PAD) in IX segment of the spinal cord evoked by X dorsal root stimulation (57 +/- 8% of initial level, n = 5, p < 0.05). The action potentials (AP) recorded in dorsal root afferents was also suppressed under the GABA action (74 +/- 9%, p < 0.05). Bath application of bicuculline (50 microM) reduced the PAD (21 +/- 7%), n = 6, p < 0.05), meanwhile the AP in dorsal root afferents was resistant against the bicuculline action. Bath application of 5-HT (25 microM) depressed the PAD (34 +/- 7%, n = 7, p < 0.05) and the amplitude of the AP recorded from the single afferent fibre in dorsal column (76 +/- 6%, n = 7, p < 0.05). In contrast to GABA, 5-HT more effectively suppressed the late phase of the PAD evoked by X dorsal root stimulation and caused (76 +/- 6%, n = 7, p < 0.05) an alteration of the AP shape. All effects induced by these drugs were reversible. The mechanisms of GABA and 5-HT modulation of spinal cord afferent income are discussed.  相似文献   

2.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

3.
The actions of serotonin on frog primary afferent terminals and cell bodies   总被引:1,自引:0,他引:1  
The actions of serotonin (5-HT) were studied in the isolated frog spinal cord and dorsal root ganglion preparations. In the spinal cord, 5-HT increased the spontaneous activity recorded from dorsal roots, facilitated evoked spinal reflexes and produced fast and slow primary afferent depolarization (PAD). A direct action of 5-HT on primary afferent terminals is likely since 5-HT induced PAD remained in the presence of 1 microM tetrodotoxin and 2 mM Mn2+. The direct action of 5-HT on primary afferent terminals was blocked by methysergide and attenuated by concentrations of Mn2+ in excess of that required to block transmitter release. Cell bodies of the dorsal root ganglion were also depolarized by 5-HT. A slow hyperpolarization occasionally followed the initial depolarization. The depolarizing action of 5-HT in the dorsal root ganglion was also attenuated by treatment with Mn2+. It is concluded that 5-HT acts directly on frog primary afferents and that this influence may involve a calcium sensitive process. The dorsal root ganglion response to 5-HT appears to be a suitable model of the afferent terminal response.  相似文献   

4.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

5.
Wan YH  Wang YY  Dai F  Hu SJ 《生理学报》2004,56(4):550-557
本文描述了用明胶半包埋法制备带背根脊髓薄片的实验步骤,和在脊髓背角记录由初级传入纤维介导的突触后电流的可视膜片钳法。手术制备一段带背根的脊髓标本,并用20%的明胶包埋在琼脂块上,再用振动切片机切片获得带背根的脊髓薄片。通过红外线可视的引导,在脊髓背角神经元上建立全细胞封接模式。在钳制电压为-70mV条件下,记录自发的和背根刺激引起的兴奋性突触后电流。以传入纤维的传导速度与刺激阈值为指标,可以区分A样纤维与C样纤维兴奋性突触后电流。在钳制电压为0mV条件下,记录自发的和背根刺激引起的抑制性突触后电流。用5μmol/L的士宁或20μmol/L的荷包牡丹碱分离出γ-氨基丁酸能或甘氨酸能的抑制性突触后电流。用可视膜片钳方法可以准确测量脊髓背角神经元的突触后电流,从而研究初级传入突触的传递过程。更重要的是,在红外线可视观察的帮助下,建立膜片钳封接的成功率显著提高,同时也使记录研究脊髓背角深层神经元变得更加容易。本研究为探索初级传入突触传递过程提供了一个有效的方法。  相似文献   

6.
Dorsal root potentials before and after adding vasopressin or oxytocin to the perfusing fluid were investigated during experiments on one or two perfused spinal cord segments isolated from 12- to 16-day-old rats. It was found that both neuropeptides reversibly inhibited the amplitude of dorsal root potentials produced by stimulating the adjoining dorsal root. The effect was dependent on concentration and time of peptide action on the brain. Both vasopressin and oxytocin were found to produce slow, reversible, dose-dependent depolarization at primary afferent fiber terminals. Depolarization persists when trans-synaptic transmission has been completely blocked owing to substitution of calcium by manganese ions in the perfusing solution. Synaptic contacts are thought to exist between peptidergic hypothalamospinal fibers and dorsal root afferent fiber terminals. The functional significance of these connections is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 757–763, November–December, 1988.  相似文献   

7.
Two pairs of wire electrodes were used to record single afferent action potentials from ventral roots and single efferent action potentials from dorsal roots of dogs and humans. A human lower sacral ventral root contained about 20 to 30% afferents among fibres with a diameter larger than 5 microns; a comparable ventral root of a dog contained about 1% afferents. Human S3, S4 and S5 dorsal roots contained 3, 18, and 20 to 30% efferent fibres respectively; a comparable dorsal root of the dog contained less than 1% efferent fibres. Primary and secondary muscle spindle afferents, Golgi tendon organ afferents, and afferents from the mechanoreceptors of the urinary bladder and anal canal mucosa were activated in a dog ventral root by pulling bladder and anal catheters. Their peak group conduction velocities were 82, 57, 71 and 18 m/s at 34 degrees C respectively. The dog afferents conducted more than 30% faster than did comparable human nerve fibres. By strongly pulling the bladder catheter, the static human dorsal root gamma 21-motoneurons increased their activity for about 7 s which in turn strongly increased the dorsal root spindle afferent activity for more than 10 min; the human static intrafusal gamma-motoneurons seemed to show cumulative properties.  相似文献   

8.
On the origins of dorsal root potentials   总被引:9,自引:8,他引:1  
  相似文献   

9.
The effect of the convulsant bemegride (β-ethyl-β-methylglutarimide) on spinal-root potentials was investigated in frogs. After intravenous injection in subconvulsant doses (5–12 mg/kg) bemegride caused rapid depression of the dorsal-root potentials evoked by stimulation of the neighboring dorsal or ventral root. Their amplitude fell by 55–67% 3–6 min after bemegride injection. The action of bemegride was reversible and the amplitude of the dorsal-root potentials returned to its initial level within 1 h. Ventral-root potentials showed greater fluctuations of amplitude after injection of bemegride than in the control. Bemegride is evidently an effective agent blocking depolarization of primary afferents in the frog spinal cord.  相似文献   

10.
Endomorphin-2 is an endogenous opioid in primary sensory afferent fibers   总被引:7,自引:0,他引:7  
Evidence is presented that the recently discovered endogenous mu-selective agonist, endomorphin-2, is localized in primary sensory afferents. Endomorphin-2-like immunoreactivity was found to be colocalized in a subset of substance P- and mu opiate receptor-containing fibers in the superficial laminae of the spinal cord and spinal trigeminal nucleus. Disruption of primary sensory afferents by mechanical (deafferentation by dorsal rhizotomy) or chemical (exposure to the primary afferent neurotoxin, capsaicin) methods virtually abolished endomorphin-2-like immunoreactivity in the dorsal horn. These results indicate that endomorphin-2 is present in primary afferent fibers where it can serve as the endogenous ligand for pre- and postsynaptic mu receptors and as a major modulator of pain perception.  相似文献   

11.
The comparative study, when stimulation is increased, of the amplitude changes shown by the negative waves of dorsal root potentials, indicates that the N1 and N2 waves are evoked by A alpha cutaneous afferent, whereas N3 wave is due to A alpha, A beta and perhaps A delta cutaneous afferents. On the other hand, a possible inhibitory action of N1, N2 negative complex on N3 wave is postulated.  相似文献   

12.
Presynaptic inhibition is one of the most powerful inhibitory mechanisms in the spinal cord. The underlying physiological mechanism is a depolarization of primary afferent fibers mediated by GABAergic axo-axonal synapses (primary afferent depolarization). The strength of primary afferent depolarization can be measured by recording of volume-conducted potentials at the dorsal root (dorsal root potentials, DRP). Pathological changes of presynaptic inhibition are crucial in the abnormal central processing of certain pain conditions and in some disorders of motor hyperexcitability. Here, we describe a method of recording DRP in vivo in mice. The preparation of spinal cord dorsal roots in the anesthetized animal and the recording procedure using suction electrodes are explained. This method allows measuring GABAergic DRP and thereby estimating spinal presynaptic inhibition in the living mouse. In combination with transgenic mouse models, DRP recording may serve as a powerful tool to investigate disease-associated spinal pathophysiology. In vivo recording has several advantages compared to ex vivo isolated spinal cord preparations, e.g. the possibility of simultaneous recording or manipulation of supraspinal networks and induction of DRP by stimulation of peripheral nerves.  相似文献   

13.
Intracellular recording was used to investigate the modulatory effects of serotonin and octopamine on the identified synapses between filiform hair sensory afferents and giant interneurons in the first instar cockroach, Periplaneta americana. Serotonin at 10(-4) mol l(-1) to 10(-3) mol l(-1) reduced the amplitude of the lateral axon-to-ipsilateral giant interneuron 3 excitatory postsynaptic potentials. and octopamine at 10(-4) mol l(-1) increased their amplitude. Similar effects were seen on excitatory postsynaptic potentials in dorsal giant interneuron 6. Several lines of evidence suggest that both substances modulate the amplitude of excitatory postsynaptic potentials by acting presynaptically, rather than on the postsynaptic neuron. The fitting of simple binomial distributions to the postsynaptic potential amplitude histograms suggested that, for both serotonin and octopamine, the number of synaptic release sites was being modulated. Secondly, the amplitudes of miniature excitatory postsynaptic potentials recorded in the presence of tetrodotoxin were unaffected by either modulator. Finally, recordings from contralateral giant interneuron 3, which has two identifiable populations of synaptic inputs, showed that each modulator had a more pronounced effect on excitatory postsynaptic potentials evoked by the lateral axon than on those evoked by the medial axon. Immunocytochemistry confirmed that neuropilar processes containing serotonin are present in close proximity to these synapses.  相似文献   

14.

Background

Small neurons of the dorsal root ganglion (DRG) express five of the nine known voltage-gated sodium channels. Each channel has unique biophysical characteristics which determine how it contributes to the generation of action potentials (AP). To better understand how AP amplitude is maintained in nociceptive DRG neurons and their centrally projecting axons, which are subjected to depolarization within the dorsal horn, we investigated the dependence of AP amplitude on membrane potential, and how that dependence is altered by the presence or absence of sodium channel Nav1.8.

Results

In small neurons cultured from wild type (WT) adult mouse DRG, AP amplitude decreases as the membrane potential is depolarized from -90 mV to -30 mV. The decrease in amplitude is best fit by two Boltzmann equations, having V1/2 values of -73 and -37 mV. These values are similar to the V1/2 values for steady-state fast inactivation of tetrodotoxin-sensitive (TTX-s) sodium channels, and the tetrodotoxin-resistant (TTX-r) Nav1.8 sodium channel, respectively. Addition of TTX eliminates the more hyperpolarized V1/2 component and leads to increasing AP amplitude for holding potentials of -90 to -60 mV. This increase is substantially reduced by the addition of potassium channel blockers. In neurons from Nav1.8(-/-) mice, the voltage-dependent decrease in AP amplitude is characterized by a single Boltzmann equation with a V1/2 value of -55 mV, suggesting a shift in the steady-state fast inactivation properties of TTX-s sodium channels. Transfection of Nav1.8(-/-) DRG neurons with DNA encoding Nav1.8 results in a membrane potential-dependent decrease in AP amplitude that recapitulates WT properties.

Conclusion

We conclude that the presence of Nav1.8 allows AP amplitude to be maintained in DRG neurons and their centrally projecting axons even when depolarized within the dorsal horn.  相似文献   

15.
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.  相似文献   

16.
We studied the effects of a neuroprotector, riluzole, on the evoked mass activity of spinal neuronal mechanisms and on action potentials (APs) recorded from the sciatic nerve in intact rats and rats with the manifestations of postdenervational and 4-aminopyridine (4-AP)-induced hyperreflexia, as well as in animals in the superreflexia state (induced by combined action of denervation and 4-AP). We measured the parameters of monosynaptic reflex discharges (monosynaptic reflexes, MRs) recorded from the ventral root (VR), of the spinal dorsal surface potential (DSPs), and of mass APs evoked in afferent and efferent fibers of the SN before and 10, 30, 60, and 120 min after injection of riluzole. It was found that in intact animals riluzole significantly (by 60–70%) decreased the amplitude of VR MRs and those of the afferent peak and N1 component of DSPs. Riluzole exerted smaller suppressive effects on mass APs in the afferent fibers of the SN; the effect on APs in the SN efferent fibers was the minimum (a 4 to 5% decrease). Under conditions of increased sensitivity of the motoneuronal postsynaptic membrane to the transmitter (postdenervational hyperreflexia) and an increased release of glutamate from presynaptic elements (4-AP-induced hyperreflexia), as well as under superreflexia conditions, the dynamics of suppression of the evoked spinal activity by riluzole showed relatively moderate differences from those in intact animals. Under the above conditions, riluzole in the same manner decreased the amplitude of VR MRs. In the superreflexia state, the agent blocked the development of additional components of these dramatically increased potentials (in the above state, their amplitude increased by nearly nine times, on average, and this resulted in the generation of such components). We believe that the inhibitory effect of riluzole on glutamatergic neurotransmission in the spinal cord is based, first of all, on blocking of excitation in afferent presynaptic terminals. The possibility to use riluzole for correction of abnormally increased hyperexcitability of the spinal neuronal systems is discussed. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 416–423, September–December, 2005.  相似文献   

17.
18.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

19.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   

20.
Summary We have investigated the connectivity of four classes of mechanosensory afferents to giant interneurons in the earthwormLumbricus. Three of these classes of afferents change their specification for connection to medial giant (MGF) and lateral giant (LGF) fibers along the length of the animal. Near the caudal end, stimulation of touch, pressure and small tactile fibers generates excitatory post-synaptic potentials, epsp's, in the two LGF's but not in the MGF. Near the rostral end these afferents produce much smaller epsp's in the LGFs but produce large epsp's in the MGF. In the middle region of the animal an overlap region exists where both giant fibers receive approximately equal inputs from these afferents. The amplitude of these inputs are reduced compared to the maxima seen at either end. The fourth class of sensory afferents investigated, the stretch neurons, have no synaptic effect on the giant fibers anywhere in the nerve cord.These results explain at least part of the basis, in neuronal connectivity, for the differences in response to tactile stimulation of the head and tail segments previously characterized in terms of behavior and giant fiber impulse activity. In this system developmental mechanisms generating synaptic connectivity patterns have coded certain classes of homologous afferent neurons and interneurons to make different connections in different segments.Abbreviations MGF medial giant fiber - LGF lateral giant fiber - SN1 first segmental root - SN2 second segmental root - SN3 third segmental root - RIN giant interneuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号