首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-domain (D1D2D3) urokinase receptor (CD87) is highly susceptible to cleavage within the D1-D2 linker sequence, but also within the juxtamembrane region by yet poorly characterized proteinases, allowing the release of D1 and D2D3 species in various (patho)physiological body fluids. Using immunoblot analysis and ELISA applied to a recombinant soluble CD87 and to CD87-expressing epithelial cells, we establish that exogenous or in situ generated plasmin proteolyzes CD87 in the D1-D2 linker and D3 carboxyterminal sequences, producing a major soluble D2D3 species. Mass spectrometry analysis of the fragmentation of CD87-related synthetic peptides, and aminoterminal sequencing of D2D3 reveal Arg83, Arg89, and Arg281 as residues targeted by plasmin within human CD87.  相似文献   

2.
The human airway trypsin-like protease (HAT) is a respiratory epithelium-associated, type II transmembrane serine protease, which is also detected as an extracellular enzyme in lung fluids during airway inflammatory disorders. We have evaluated its capacity to affect the urokinase-type plasminogen activator receptor (uPAR), a membrane glycolipid-anchored, three-domain (D1D2D3) glycoprotein that plays a crucial role in innate immunity and inflammation by supporting cell migration and matrix degradation, with structure and biological properties that can be regulated via limited endoproteolysis. With the use of immunoblotting, flow immunocytometry, and ELISA analyses applied to a recombinant uPAR protein and to uPAR-expressing monocytic and human bronchial epithelial cells, it was shown that exposure of uPAR to soluble HAT in the range of 10-500 nM resulted in the proteolytic processing of the full-length (D1D2D3) into the truncated (D2D3) species, with cleavage occurring in the D1 to D2 linker sequence after arginine residues at position 83 and 89. Using immunohistochemistry, we found that both HAT and uPAR were expressed in the human bronchial epithelium. Moreover, transient cotransfection in epithelial cells showed that membrane coexpression of the two partners produced a constitutive and extensive shedding of the D1 domain, occurring for membrane-associated HAT concentrations in the nanomolar range. Because the truncated receptor was found to be unable to bind two of the major uPAR ligands, the adhesive matrix protein vitronectin and the serine protease urokinase, it thus appears that proteolytic regulation of uPAR by HAT is likely to modulate cell adherence and motility, as well as tissue remodeling during the inflammatory response in the airways.  相似文献   

3.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

4.
1. Proteoglycan was obtained from bovine nasal cartilage by a procedure involving sequential extraction with a low-ionic-strength KCl solution, then a high-ionic-strength CaCl2 solution. Purification was by CsCl-density-gradient centrifugation. 2. The CaCl2- extracted proteoglycan was subjected to proteolytic degradation by papain, trypsin, cathepsin D, cathepsin B, lysosomal elastase or cathepsin G. Degradation was allowed to proceed until no further decrease in viscosity was detectable. 3. The size and chemical composition of the final degradation products varied with the different proteinases. Cathepsin D and cathepsin G produced glycosaminoglycan-peptides of largest average size, and papain produced the smallest product. 4. The KCl-extracted proteoglycan was intermediate in molecular size and composition between the CaCl2-extracted proteoglycan and the largest final degradation products, and may have been formed by limited proteolysis during the extraction procedure. 5. It is postulated that the glycosaminoglycan chains are arranged in groups along the proteoglycan core protein. Proteolytic cleavage between the groups may be common to the majority of proteinases, whereas clevage within the groups is dependent on the specificity of each individual proteinase.  相似文献   

5.
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. Thrombin selectively cleaves PAR1, PAR3, and PAR4 to induce activation of platelets and vascular cells, while PAR2 is preferentially cleaved by trypsin. In pathological situations, other proteolytic enzymes may be generated in the circulation and could modify the responses of PARs by cleaving their extracellular domains. To assess the ability of such proteases to activate or inactivate PARs, we designed a strategy for locating cleavage sites on the exofacial NH(2)-terminal fragments of the receptors. The first extracellular segments of PAR1 (PAR1E) and PAR2 (PAR2E) expressed as recombinant proteins in Escherichia coli were incubated with a series of proteases likely to be encountered in the circulation during thrombosis or inflammation. Kinetic and dose-response studies were performed, and the cleavage products were analyzed by MALDI-TOF mass spectrometry. Thrombin cleaved PAR1E at the Arg41-Ser42 activation site at concentrations known to induce cellular activation, supporting a native conformation of the recombinant polypeptide. Plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3 cleaved at multiple sites and would be expected to disable PAR1 by cleaving COOH-terminal to the activation site. Cleavage specificities were further confirmed using activation site defective PAR1E S42P mutant polypeptides. Surface plasmon resonance studies on immobilized PAR1E or PAR1E S42P were consistent with cleavage results obtained in solution and allowed us to determine affinities of PAR1E-thrombin binding. FACS analyses of intact platelets confirmed the cleavage of PAR1 downstream of the Arg41-Ser42 site. Mass spectrometry studies of PAR2E predicted activation of PAR2 by trypsin through cleavage at the Arg36-Ser37 site, no effect of thrombin, and inactivation of the receptor by plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3. The inhibitory effect of elastase was confirmed on native PAR1 and PAR2 on the basis of Ca(2+) signaling studies in endothelial cells. It was concluded that none of the main proteases generated during fibrinolysis or inflammation appears to be able to signal through PAR1 or PAR2. This strategy provides results which can be extended to the native receptor to predict its activation or inactivation, and it could likewise be used to study other PARs or protease-dependent processes.  相似文献   

6.
Native laminin-nidogen complex isolated from mouse Engelbreth-Holm-Swarm tumor was treated with purified cathepsin G or leucocyte elastase, two neutral serine proteases which play a role in inflammatory processes accompanied by degradation of basement membranes. Both enzymes were found to be more active than porcine pancreatic elastase. In the absence of Ca2+, laminin fragments produced by leucocyte elastase resembled those formed by the pancreatic enzyme but at physiological concentrations of Ca2+ cleavage by cathepsin G was much more selective. Initially laminin (900 kDa) was cleaved at two major sites only with similar rates leading to three fragments. Fragment C1-4 (about 550 kDa) comprises the intact three short arms of the molecule and fragment C8-9 (about 350 kDa) contains the entire triple-coiled region by which its three chains are assembled and the major part of the terminal globular domain of the long arm. The remaining C-terminal region of this domain was recovered as fragment C3 of about 50 kDa. Stabilization against proteolytic attack was restricted to the region of fragment C1-4 and only this fragment exhibited strong Ca2+ dependent self-association similar to that of intact laminin or of its complex with nidogen. The associative properties of fragment C1-4 were dramatically diminished upon removal of the tip of one of the short arms comprising fragment 4. In addition, this provides a clear assignment of the important laminin function to a distinct domain in one of its short arms. The new fragment C8-9 may be employed for exploring the properties and possible functions of the upper long-arm region which so far has not been available as a fragment.  相似文献   

7.
Cathepsin X is a lysosomal cysteine protease, found predominantly in cells of monocyte/macrophage lineage. It acts as a monocarboxypepidase and has a strict positional and narrower substrate specificity relative to the other human cathepsins. In our recent studies we identified ? β2 subunit of integrin receptors and α and γ enolase as possible substrates for cathepsin X carboxypeptidase activity. In both cases cathepsin X is capable to cleave regulatory motifs at C-terminus affecting the function of targeted molecules. We demonstrated that via activation of β2 integrin receptor Mac-1 (CD11b/CD18) active cathepsin X enhances adhesion of monocytes/macrophages to fibrinogen and regulates the phagocytosis. By activation of Mac-1 receptor cathepsin X may regulate also the maturation of dendritic cells, a process, which is crucial in the initiation of adaptive immunity. Cathepsin X activates also the other β2 integrin receptor, LFA-1 (CD11a/CD18) which is involved in the proliferation of T lymphocytes. By modulating the activity of LFA-1 cathepsin X causes cytoskeletal rearrangements and morphological changes of T lymphocytes enhancing ameboid-like migration in 2-D and 3-D barriers and increasing homotypic aggregation. The cleavage of C-terminal amino acids of α and γ enolase by cathepsin X abolishes their neurotrophic activity affecting neuronal cell survival and neuritogenesis.  相似文献   

8.
Polymorphonuclear neutrophils (PMNs) are the major source of proteolytic activities involved mainly in tissue injuries observed in chronic inflammatory disorders. High levels of soluble forms of CD23 (the low-affinity receptor for IgE) were found in biological fluids from these patients, and recent reports focused on a CD23-mediated regulation of inflammatory response. In this context, we show here that co-culture of activated PMN with CD23+ B cells resulted in a drastic release of soluble CD23 fragments from the cell surface. This cleavage was inhibited by serine proteases inhibitors, including a1-antitrypsin. We next demonstrated that purified human leukocyte elastase or cathepsin G efficiently cleaved membrane CD23 on B cells with a high specificity. Soluble fragments released by serine proteases-mediated CD23 proteolysis stimulated resting monocytes to produce oxidative burst and proinflammatory cytokine without any co-stimulatory signal. This work strongly supports the idea that the capacity of PMN-derived proteases to release soluble forms of CD23 participates in the inflammatory process mediated by these cells.  相似文献   

9.
The ectodomain of the human transferrin receptor (TfR) is released as soluble TfR into the blood by cleavage within a stalk. The major cleavage site is located C-terminally of Arg-100; alternative cleavage sites are also present. Since the cleavage process is still unclear, we looked for proteases involved in TfR ectodomain release. In the supernatant of U937 histiocytic cells we detected alternatively cleaved TfR (at Glu-110). In membrane fractions of these cells we identified two distinct proteolytic activities responsible for TfR cleavage within the stalk at either Val-108 or Lys-95. Both activities could be inhibited by serine protease inhibitors, but not by inhibitors of any other class of proteases. Protein purification yielded a 28 kDa protein that generated the Val-108 terminus. The protease activity could be ascribed to neutrophil elastase according to the substrate specificity determined by amino acid substitution analysis of synthetic peptides, an inhibitor profile, the size of the protease and the use of specific antibodies. The results of analogous experiments suggest that the second activity is represented by another serine protease, cathepsin G. Thus, membrane-associated forms of neutrophil elastase and cathepsin G may be involved in alternative TfR shedding in U937 cells.  相似文献   

10.
The highly negatively charged membrane sialoglycoprotein leukosialin, CD43, is shed during neutrophil activation. This is generally thought to enhance cell adhesion. We here describe two novel consequences of this shedding, during neutrophil activation by phorbol esters or by chemoattractants after TNF-alpha priming. CD43 proteolysis was investigated by Western blotting, using a polyclonal antibody to CD43 intracellular domain. Our data emphasize the importance of a juxtamembranous cleavage of about 50% of membrane CD43 molecules by cathepsin G. Indeed, it is inhibited by alpha1-antichymotrypsin and cathepsin G inhibitor I and is reproduced by exogenous purified cathepsin G. The resulting membrane-anchored C-terminal fragment, CD43-CTF, becomes susceptible to presenilin/gamma-secretase, which releases CD43 intracytoplasmic domain: preincubation with three different gamma-secretase inhibitors, before PMN treatment by agonists or by purified cathepsin G, results in the accumulation of CD43-CTF. Because CD43 binds E-selectin, we also investigated the effect of the soluble extracellular domain CD43s, released by cathepsin G juxtamembranous cleavage, on neutrophil adhesion to endothelial cells. A recombinant CD43s-Fc fusion protein inhibited neutrophil E selectindependent adhesion to endothelial cells under flow conditions, while it had no effect on neutrophil static adhesion. We thus propose that, in addition to its potential pro-adhesive role, CD43 proteolysis results in: (i) the release, by cathepsin G, of CD43 extracellular domain, able to inhibit the adhesion of flowing neutrophils on endothelial cells and thus to participate to the natural control of inflammation; (ii) the release and/or the clearance, by presenilin/gamma-secretase, of CD43 intracellular domain, thereby regulating CD43-mediated signaling.  相似文献   

11.
Heparanase is an endo-beta-D-glucuronidase that degrades heparan sulfate in the extracellular matrix and cell surfaces. Human proheparanase is produced as a latent 65-kDa polypeptide undergoing processing at two potential proteolytic cleavage sites, located at Glu109-Ser110 (site 1) and Gln157-Lys158 (site 2). Cleavage of proheparanase yields 8- and 50-kDa subunits that heterodimerize to form the active enzyme. The fate of the linker segment (Ser110-Gln157) residing between the two subunits, the mode of processing, and the protease(s) engaged in proheparanase processing are currently unknown. We applied multiple site-directed mutagenesis and deletions to study the nature of the potential cleavage sites and amino acids essential for processing of proheparanase in transfected human choriocarcinoma cells devoid of endogenous heparanase but possessing the enzymatic machinery for proper processing and activation of the proenzyme. Although mutagenesis at site 1 and its flanking sequences failed to identify critical residues for proteolytic cleavage, processing at site 2 required a bulky hydrophobic amino acid at position 156 (i.e. P2 of the cleavage site). Substitution of Tyr156 by Ala or Glu, but not Val, resulted in cleavage at an upstream site in the linker segment, yielding an improperly processed inactive enzyme. Processing of the latent 65-kDa proheparanase in transfected Jar cells was inhibited by a cell-permeable inhibitor of cathepsin L. Moreover, recombinant 65-kDa proheparanase was processed and activated by cathepsin L in a cell-free system. Altogether, these results suggest that proheparanase processing at site 2 is brought about by cathepsin L-like proteases. The involvement of other members of the cathepsin family with specificity to bulky hydrophobic residues cannot be excluded. Our results and a three-dimensional model of the enzyme are expected to accelerate the design of inhibitory molecules capable of suppressing heparanase-mediated enhancement of tumor angiogenesis and metastasis.  相似文献   

12.
Expansion of the lysosomal system, including cathepsin D upregulation, is an early and prominent finding in Alzheimer''s disease brain. Cell culture studies, however, have provided differing perspectives on the lysosomal connection to Alzheimer''s disease, including both protective and detrimental influences. We sought to clarify and molecularly define the connection in vivo in a genetically tractable model organism. Cathepsin D is upregulated with age in a Drosophila model of Alzheimer''s disease and related tauopathies. Genetic analysis reveals that cathepsin D plays a neuroprotective role because genetic ablation of cathepsin D markedly potentiates tau-induced neurotoxicity. Further, generation of a C-terminally truncated form of tau found in Alzheimer''s disease patients is significantly increased in the absence of cathepsin D. We show that truncated tau has markedly increased neurotoxicity, while solubility of truncated tau is decreased. Importantly, the toxicity of truncated tau is not affected by removal of cathepsin D, providing genetic evidence that modulation of neurotoxicity by cathepsin D is mediated through C-terminal cleavage of tau. We demonstrate that removing cathepsin D in adult postmitotic neurons leads to aberrant lysosomal expansion and caspase activation in vivo, suggesting a mechanism for C-terminal truncation of tau. We also demonstrate that both cathepsin D knockout mice and cathepsin D–deficient sheep show abnormal C-terminal truncation of tau and accompanying caspase activation. Thus, caspase cleavage of tau may be a molecular mechanism through which lysosomal dysfunction and neurodegeneration are causally linked in Alzheimer''s disease.  相似文献   

13.
Human peroxidasin 1 is a multidomain peroxidase situated in the basement membrane. The iron enzyme with covalently bound heme oxidizes bromide to hypobromous acid which facilitates the formation of distinct sulfilimine cross-links in the collagen IV network and therefore contributes to its mechanical stability. Additional to the catalytically active peroxidase domain peroxidasin comprises a leucine rich repeat domain, four Ig domains and a C-terminal von Willebrand factor type C module (VWC). Peroxidasin has been shown to form homotrimers involving two redox-sensitive cysteine residues and to undergo posttranslational C-terminal proteolytic cleavage. The present study on several recombinantly produced truncated peroxidasin variants showed that the VWC is not required for trimer formation whereas the alpha-helical linker region located between the peroxidase domain and the VWC is crucial for trimerization. Our data furthermore implies that peroxidasin oligomerization occurs intracellularly before C-terminal cleavage. For the first time we present overall solution structures of monomeric and trimeric truncated peroxidasin variants which were determined by rotary shadowing combined with transmission electron microscopy and by small-angle X-ray scattering (SAXS). A triangular arrangement of the peroxidase domains to each other within the homotrimer was revealed and this structure was confirmed by a model of trimeric peroxidase domains. Our SAXS data showed that the Ig domains are highly flexible and interact with the peroxidase domain and that within the homotrimer each alpha-helical linker region interacts with the respective adjacent peroxidase domain. The implications of our findings on the structure-function relationship of peroxidasin are discussed.  相似文献   

14.
15.
Covalent binding of C3 fragments to U937 cell membranes involved a cell surface-associated proteolytic activity. Two proteases able to cleave C3 were purified from U937 plasma membranes. Purification involved solubilization of the membranes and ion exchange chromatography. One of the purified proteases was identified as elastase, based upon a substrate specificity for benzyloxycarbonylalanine-o-nitrophenyl ester and complete inhibition by elastatinal and methoxysuccinyl-alanyl-alanyl-prolyl-valyl-chloromethyl-ketone. The other protease (m.w. 28,000) is cathepsin G, as deduced from the amino acid composition, the amino-terminal sequence, and the substrate specificity for succinyl-alanyl-alanyl-phenylalanine-p-nitroanilide. These two lysosomal proteases are present on the U937 cell surface, as confirmed by immunofluorescence analysis. Plasma membrane elastase and cathepsin G from U937 cells cleave C3 into C3a- and C3b-like fragments; further incubation leads to C3c- and C3dg-like fragments, as judged from SDS-PAGE analysis of the digests. Sequencing of the C3b-like fragment purified by reverse phase chromatography indicates that initial cleavage of C3 by purified cathepsin G occurs at two positions in the amino-terminal part of the alpha-chain, at a Arg-Ser bond located between residues 748 and 749 and at a Leu-Asp bond between residues 751 and 752. These proteases are, thus, able to generate, on the U937 surface, active fragments of C3, which are likely to be involved in cell-protein and cell-cell interactions.  相似文献   

16.
Transmigration of neutrophils across the endothelium occurs at the cell-cell junctions where the vascular endothelium cadherin (VE cadherin) is expressed. This adhesive receptor was previously demonstrated to be involved in the maintenance of endothelium integrity. We propose that neutrophil transmigration across the vascular endothelium goes in parallel with cleavage of VE cadherin by elastase and cathepsin G present on the surface of neutrophils. This hypothesis is supported by the following lines of evidence. 1) Proteolytic fragments of VE cadherin are released into the culture medium upon adhesion of neutrophils to endothelial cell monolayers; 2) conditioned culture medium, obtained after neutrophil adhesion to endothelial monolayers, cleaves the recombinantly expressed VE cadherin extracellular domain; 3) these cleavages are inhibited by inhibitors of elastase; 4) VE cadherin fragments produced by conditioned culture medium or by exogenously added elastase are identical as shown by N-terminal sequencing and mass spectrometry analysis; 5) both elastase- and cathepsin G-specific VE cadherin cleavage patterns are produced upon incubation with tumor necrosis factor alpha-stimulated and fixed neutrophils; 6) transendothelial permeability increases in vitro upon addition of either elastase or cathepsin G; and 7) neutrophil transmigration is reduced in vitro in the presence of elastase and cathepsin G inhibitors. Our results suggest that cleavage of VE cadherin by neutrophil surface-bound proteases induces formation of gaps through which neutrophils transmigrate.  相似文献   

17.
CD147, a member of the immunoglobulin superfamily (IgSF), plays fundamental roles in intercellular interactions in numerous pathological and physiological processes. Importantly, our previous studies have demonstrated that HAb18G/CD147 is a novel hepatocellular carcinoma (HCC)-associated antigen, and HAb18G/CD147 stimulates adjacent fibroblasts and HCC cells to produce elevated levels of several matrix metalloproteinases, facilitating invasion and metastasis of HCC cells. In addition, HAb18G/CD147 has also been shown to be a novel universal cancer biomarker for diagnosis and prognostic assessment of a wide range of cancers. However, the structural basis underlying the multifunctional character of CD147 remains unresolved. We report here the crystal structure of the extracellular portion of HAb18G/CD147 at 2.8A resolution. The structure comprises an N-terminal IgC2 domain and a C-terminal IgI domain, which are connected by a 5-residue flexible linker. This unique C2-I domain organization is distinct from those of other IgSF members. Four homophilic dimers exist in the crystal and adopt C2-C2 and C2-I dimerization rather than V-V dimerization commonly found in other IgSF members. This type of homophilic association thus presents a novel model for homophilic interaction between C2 domains of IgSF members. Moreover, the crystal structure of HAb18G/CD147 provides a good structural explanation for the established multifunction of CD147 mediated by homo/hetero-oligomerizations and should represent a general architecture of other CD147 family members.  相似文献   

18.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

19.
1. CaCl2-extracted proteoglycan from bovine nasal cartilage was degraded by four tissue proteinases till no further decrease in hydroynamic size was obtained. The proteoglycan and its final degradation products were then fractionated by Sepharose 2B chromatography. 2. The average size of the degradation products was least for cathepsin B and lysosomal elastase, and greatest for cathepsin D and cathepsin G. The latter two proteinases also produced degradation products that showed the widest range of sizes. 3. The structure of the degradation products ranged from peptides containing a single glycosaminoglycan chain to those containing twelve or more chains. Of the four proteinases, only cathepsin B produced peptides that contained a single chondroitin sulphate chain. 4. The proteoglycan was very heterogeneous with respect to size and chemical composition. Its behaviour on electrophoresis suggested that at least two genetically distinct core proteins might exist. 5. Irrespective of their structural variations, all proteoglycan molecules were able to interact with hyaluronic acid. In contrast, none of the degradation products were capable of this type of interaction. 6. A pathway for the proteolytic degradation of proteoglycans is postulated in which the sites of initial cleavage may be common to the majority of proteinases, whereas the production of the final clusters is dependent on the specificity of the proteinase. Only those proteinases of broadest specificity can produce single-chain chondroitin sulphate-peptides.  相似文献   

20.
The formation of beta A4 amyloid in the brains of individuals with Alzheimer's disease requires the proteolytic cleavage of amyloid precursor protein. Several lines of evidence suggest that cathepsin D, the major lysosomal/endosomal aspartic protease, may be involved in this process. In this work, we used a sensitive in vitro method of detection to investigate the role of cathepsin D in the proteolytic processing of a 100-amino acid C-terminal fragment (C100) inclusive of beta A4 and cytoplasmic domain of APP. Digestion of C100 with cathepsin D resulted in cleavage at the amyloidogenic gamma-cleavage sites. This occurred preferentially at Thr43-Val44 and at Ala42-Thr43, generating full length beta A4 43 and beta A4 42 amyloid peptides, respectively. Cathepsin D was also found to cleave the substrate at the following nonamyloidogenic sites; Leu34-Met35, Thr48-Leu49 and Leu49-Val50. A high concentration of cathepsin D resulted in cleavage also occurring at Phe19-Phe20, Phe20-Ala21 and Phe93-Phe94 of the C100, suggesting that these sites are somewhat less sensitive to the action of cathepsin D. Digestion of C100 using different solublizing agents indicated that the cleavage of C100 by cathepsin D is greatly influenced by the structural integrity of the substrate. However, our results suggest that cathepsin D could generate the pathogenic beta A4 amyloid peptides from its precursor in vitro, which may indicate a role in the amyloidogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号