首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

2.
Dopamine receptor D(2) (DRD2) has two splicing isoforms, a long form (D2L) and short form (D2S), which have distinct functions in the dopaminergic system. However, the regulatory mechanism of the alternative splicing of DRD2 is unknown. In this study, we examined which splicing factors regulate the expression of D2L and D2S by over-expressing several RNA-binding proteins in HEK293 cells. In a cellular splicing assay, the over-expression of polypyrimidine tract-binding protein 1 (PTBP1) reduced the expression of D2S, whereas the knockdown of PTBP1 increased the expression of D2S. We also identified the regions of DRD2 that are responsive to PTBP1 using heterologous minigenes and deletion mutants. Our results indicate that PTBP1 regulates the alternative splicing of DRD2. Considering that DRD2 inhibits cAMP-dependent protein kinase A, which modulates the intracellular localization of PTBP1, PTBP1 may contribute to the autoregulation of DRD2 by regulating the expression of its isoforms.  相似文献   

3.
Administration of psychostimulants modulates mRNA of several regulators of guanine nucleotide-binding protein signaling (RGSs) proteins in the brain. In the present study, the regulation of amphetamine-induced decrease of RGS4 expression in the rat forebrain was evaluated. RGS4 mRNA was reduced by amphetamine in an inverse, dose-dependent manner. The lowest dose (2.5 mg/kg) decreased RGS4 mRNA in caudate putamen for up to 6 h after injection whereas the decrease in several frontal cortical areas was detected at 3 h only. Analysis of RGS4 immunoreactivity by western blotting revealed a decrease 3 h after amphetamine solely in the caudate putamen. Systemic administration of D(1) (SCH23390) or D(2) (eticlopride) receptor antagonists blocked amphetamine-induced locomotion but amphetamine augmented both the SCH23390-induced increase and the eticlopride-induced decrease in RGS4 mRNA in the caudate putamen. Further, the down-regulation of RGS4 immunoreactivity by eticlopride was robust whereas the effect of SCH23390 was blunted as compared with its effect on mRNA. These data suggest that, by decreasing RGS4 expression in the caudate putamen via D(1) receptors, acute amphetamine could disinhibit RGS4-sensitive guanine nucleotide-binding protein alpha-subunit i- and/or q-coupled signaling pathways and favor mechanisms that counterbalance D(1) receptor stimulation.  相似文献   

4.
5.
Yuan TT  Qiao H  Dong SP  An SC 《生理学报》2011,63(4):333-341
本文旨在探讨在慢性应激性抑郁发生过程中多巴胺D1受体对谷氨酸及其离子型受体的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,结合海马微量注射多巴胺D1受体激动剂SKF38393、非竞争性N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体拮抗剂MK-801和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的拮抗剂NBQX,运用糖水偏爱测试、旷场实验和悬尾实验等方法检测动物的行为表现,采用高效液相色谱法(high-performance liquid chromatography,HPLC)和Western blot实验来检测海马内谷氨酸含量及其离子型受体关键亚基的表达。结果显示,与对照组相比,CUMS组大鼠表现出明显的抑郁样行为变化,且海马谷氨酸含量升高,其NMDA受体的NR1亚基与AMPA受体的GluR2/3亚基也明显下调;注射SKF38393后可明显改善应激引起的抑郁样行为,且海马谷氨酸含量显...  相似文献   

6.
7.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

8.
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).  相似文献   

9.
We have cloned two novel Caenorhabditis elegans dopamine receptors, DOP-3 and DOP-4. DOP-3 shows high sequence homology with other D2-like dopamine receptors. As a result of alternative splicing, a truncated splice variant of DOP-3, DOP-3nf, was produced. Because of the in-frame insertion of a stop codon in the third intracellular loop, DOP-3nf lacks the sixth and seventh transmembrane domains that are found in the full-length DOP-3 receptor. Reporter gene assay showed that DOP-3 attenuates forskolin-stimulated cAMP formation in response to dopamine stimulation, whereas DOP-3nf does not. When DOP-3 was coexpressed with DOP-3nf, the ability to inhibit forskolin-stimulated cAMP formation was reduced. DOP-4 shows high sequence homology with D1-like dopamine receptors unique to invertebrates, which are distinct from mammalian D1-like dopamine receptors. Reporter gene assay showed that DOP-4 stimulates cAMP accumulation in response to dopamine stimulation. These two receptors provide new opportunities to understand dopaminergic signaling at the molecular level.  相似文献   

10.
Summary The effects of purified Ca2+, phospholipid-dependent protein kinase (C-kinase) were studied on adenylate cyclase activity from rat brain striatum. C-kinase treatment of the membranes stimulated adenylate cyclase activity, the maximal stimulation between 50–80% was observed at 3.5 U/ml, whereas the catalytic subunit of cAMP dependent protein kinase did not show any effect on enzyme activity. The inclusion of Ca2+ and phosphatidyl serine did not augment the percent stimulation of adenylate cyclase by C-kinase, however EGTA inhibited the stimulatory effect of C-kinase on enzyme activity. Furthermore, the known inhibitors of C-kinase such as polymyxin-B and 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride (H-7) also inhibited the stimulatory effect of C-kinase on adenylate cyclase activity. In addition, in the presence of GTP the stimulatory effects of C-kinase on basal and N-Ethylcarboxamide adenosine- (NECA-), dopamine-(DA) and forskolin- (FSK) sensitive adenylate cyclase activities were augmented. On the other hand, the inhibitory effect of high concentrations of GTP on enzyme activity was attenuated by C-kinase treatment. In addition, oxotremorine inhibited adenylate cyclase activity in a concentration dependent manner, with an apparent Ki of about 10 µM and C-kinase treatment almost completely abolished this inhibition. These data suggest that C-kinase may play an important role in the regulation of adenylate cyclase activity possibly by interacting with a guanine nucleotide regulatory protein.Abbreviations C-kinase Ca2– phospholipid-dependent protein kinase - NECA N-Ethylcarboxamide adenosine - DA Dopamine - FSK Forskolin - PMA Phorbol 12-(-Myristate), 13-Acetate, H-7, 1-(5-isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride Presented in part at the VIth International Conference on Cyclic nucleotides, calcium and protein phosphorylation signal transduction in biological systems. September 2-6, 1986, Bethesda, MD (USA).M.B.A.-S. was Canadian Heart Foundation Scholar during the course of these studies.  相似文献   

11.
The dopamine D1 receptor plays a major role in mediating behavioral responses to cocaine administration. The time course for the acquisition and the relative stability for the expression of behavioral responses suggest the involvement of enduring neuroadaptations in response to repeated cocaine exposure. Changes in gene expression through the D1 receptors may accompany and mediate the development of such neuroadaptations to repeated cocaine stimulation. To test this possibility, we systematically compared the expression of the fos and Jun family immediate early genes in the nucleus accumbens and caudoputamen in D1 receptor mutant and wild-type control mice after acute and repeated cocaine exposure. Moreover, we compared the expression of three molecules that have been implicated in mediating the actions of cocaine, Galphaolf, beta-catenin and brain-derived neurotrophic factor, in the two groups of mice before and after cocaine administration. We found that there is a lack of induction of c-Fos, FosB, Fra-2 and JunB by acute cocaine exposure, and of DeltaFosB by repeated cocaine administration in both the NAc and CPu of D1 receptor mutant mice compared with wild-type control mice. Moreover, the D1 receptor is differentially required for mediating Galphaolf, beta-catenin and BDNF expression in the NAc and CPu upon cocaine exposure. These results suggest that the D1 receptor is a critical mediator for cocaine-induced expression of these genes.  相似文献   

12.
13.
14.
Hypothalamic orexin (hypocretin) neurons project to the key structures of the limbic system and orexin receptors, both orexin receptor type 1 (OXR1) and type 2 (OXR2), are expressed in most limbic regions. Emerging evidence suggests that orexin is among important neurotransmitters that regulate addictive properties of drugs of abuse. In this study, we examined the effect of psychostimulant cocaine on orexin receptor protein abundance in the rat limbic system in vivo. Intermittent administration of cocaine (20 mg/kg, i.p., once daily for 5 days) caused a typical behavioral sensitization response to a challenge cocaine injection at a 14-day withdrawal period. Repeated cocaine administration at the same withdrawal time also increased OXR2 protein levels in the nucleus accumbens while repeated cocaine had no effect on OXR1 and orexin neuropeptide (both orexin-A and orexin-B) levels in this region. In contrast to the nucleus accumbens, OXR2 levels in the frontal cortex, the ventral tegmental area, the hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine. Remarkably, the up-regulated OXR2 levels in the nucleus accumbens showed a long-lasting nature as it persisted up to 60 days after the discontinuation of repeated cocaine treatments. In contrast to chronic cocaine administration, an acute cocaine injection was insufficient to modify levels of any orexin receptor and peptide. Our data identify the up-regulation of OXR2 in the nucleus accumbens as an enduring molecular event that is correlated well with behavioral plasticity in response to chronic psychostimulant administration. This OXR2 up-regulation may reflect a key adaptation of limbic orexinergic transmission to chronic drug exposure and may thus be critical for the expression of motor plasticity.  相似文献   

15.
The central dopamine system plays significant roles in motor activity and drug-induced behavioural sensitization. Our goal was to determine the significance of dopamine D(3) receptors in the development of behavioural sensitization to methamphetamine, assessed with D(3) receptor mutant mice. The absence of D(3) receptors significantly increased the behavioural responses to acute methamphetamine and evoked a faster rate of behavioural sensitization to chronic methamphetamine. In addition, both D(3) receptor protein and mRNA levels in the limbic forebrain decreased in sensitized wild-type mice. Further analyses indicated that D(1)-dependent behavioural sensitization and the number of limbic D(1) receptors increased in sensitized D(3) mutants as compared with sensitized wild-type mice. Consistent with this finding, we observed higher levels of D(1) receptor-evoked cAMP accumulation and basal phosphoDARPP-32/Thr34 in the limbic forebrain of D(3) mutants than wild-type mice and the difference was more pronounced after chronic methamphetamine treatment. We also observed an increase in phospho-extracellular signal-regulated kinase 2 but a decrease in phosphoAkt/Ser473 and phosphoglycogen synthase kinase 3 (GSK3)-alpha/beta in the limbic forebrain of D(3) mutants compared with wild-type mice after methamphetamine treatment. The convergent results implicate D(3) receptors as a negative regulator of the development of methamphetamine sensitization. A compensatory up-regulation of D(1) receptor-mediated signals, in addition to an altered Akt/GSK3 pathway, could contribute to the accelerated development of behavioural sensitization.  相似文献   

16.
Though dopaminergic mechanisms modulate cholinergic transmission and cognitive function, the significance of specific receptor subtypes remains uncertain. Here, we examined the roles of dopamine D(3) versus D(2) receptors. By analogy with tacrine (0.16-2.5 mg/kg, s.c.), the selective D(3) receptor antagonists, S33084 (0.01-0.63) and SB277,011 (0.63-40.0), elicited dose-dependent, pronounced and sustained elevations in dialysis levels of acetylcholine (ACh) in the frontal cortex, but not the hippocampus, of freely-moving rats. The actions of these antagonists were stereospecifically mimicked by (+)S14297 (1.25), whereas its inactive distomer, (-)S17777, was ineffective. The preferential D(2) receptor antagonist, L741,626 (10.0), failed to modify levels of ACh. S33084 (0.01-0.63) and SB277,011 (0.16-2.5) also mimicked tacrine (0.04-0.63) by dose-dependently attenuating the deleterious influence of scopolamine (1.25) upon social memory (recognition by an adult rat of a juvenile conspecific). Further, (+)S14297 (1.25) versus (-)S17777 stereospecifically blocked the action of scopolamine. Using an intersession interval of 120 min (spontaneous loss of recognition), S33084 (0.04-0.63), SB277,011 (0.16-10.0) and (+)S14297 (0.63-10.0) likewise mimicked tacrine (0.16-2.5) in enhancing social memory. In contrast, L741,626 (0.16-10.0) displayed amnesic properties. In conclusion, selective blockade of D(3) receptors facilitates frontocortical cholinergic transmission and improves social memory in rats. These data support the pertinence of D(3) receptors as a target for treatment of disorders in which cognitive function is compromised.  相似文献   

17.
The neurotransmitter, dopamine, binds to dopamine receptor (DR), and is involved in several functions of the brain, such as initiation and execution of movement, emotion, prolactin secretion, etc. Of all the five DRs, D2 dopamine receptor has maximal affinity for dopamine. D2 has a short isoform, D2S, and a long isoform D2L. D2L is longer than D2S by 29 amino acid residues. We studied the expression of the gene and protein of D2 receptor in the cerebral and cerebellar cortices of the brain of new born, developing, adult, and old male mice to find out: (i) at what stage of development, expression of the gene peaks and (ii) if it undergoes any changes as the animal ages, which may account for the neurodegenerative changes and symptoms of Parkinson's and other diseases seen in old age. RT-PCR and Western blot studies show that peak expression of D2 gene occurs in the cerebral and cerebellar cortices around 15-day after birth. We speculate that the majority of dopaminergic synapses are established and possibly become functional in the brain around 15-day after birth. The expression of D2 receptor is upregulated in the cerebral cortex in old mice. However, it is down-regulated in the cerebellar cortex.  相似文献   

18.
Accumulating evidence indicates that antidepressants alter intracellular signalling mechanisms resulting in long-term synaptic alterations which probably account for the delay in clinical action of these drugs. Therefore, we investigated the effects of chronic fluoxetine administration on extracellular signal-regulated kinase (ERK) 1 and 2, a group of MAPKs that mediate signal transduction from the cell surface downstream to the nucleus. Our data demonstrate that 3-week fluoxetine treatment resulted in long-lasting reduction of phospho-ERK 1 and 2. Such an effect depends on the length of the treatment given that no changes were observed after a single drug injection or after 2 weeks of treatment and it is region specific, being observed in hippocampus and frontal cortex but not in striatum. Finally, phospho-ERK 1 and 2 were differently modulated within nucleus and cytosol in hippocampus but similarly reduced in the same compartments of the frontal cortex, highlighting the specific subcellular compartmentalization of fluoxetine. Conversely, imipramine did not reduce the hippocampal phosphorylation of both ERK subtypes whereas it selectively increased ERK 1 phosphorylation in the cytosolic compartment of frontal cortex suggesting a drug-specific effect on this intracellular target. These results point to modulation of phosphorylation, rather than altered expression, as the main target in the action of fluoxetine on this pathway. The reduction of ERK 1/2 function herein reported may be associated with the therapeutic effects of fluoxetine in the treatment of depression.  相似文献   

19.
20.
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号