首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
随着花生种子萌发率和活力指数的下降,胚轴DNA开始合成的时间推迟,其合成水平也降低。但DNA合成都是先于吸胀的12h(高活力胚)或18h(低活力胚)出现一个峰,然后再持续上升。腐胺预处理明显地促进老化胚轴萌发早期(12~2dh)的DNA合成。钙离子预处理则有一定抑制作用,但两种预处理均能提高种子的活力指数,并能促进吸胀30h以后的DNA合成。  相似文献   

2.
一氧化氮对番茄种子抗吸胀冷害的影响   总被引:1,自引:0,他引:1  
以番茄毛粉802种子为材料,通过对比实验,测定分析各处理种子的萌发率及第4天的平均根长、萌发指数、活力指数,以及相对电导率(REC)、丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)含量的变化,以探讨NO对番茄种子吸胀冷害的抵抗作用及其机理.结果显示:(1)外源NO可显著提高番茄种子经12 h吸胀冷害处理后的萌发率、平均根长、萌发指数和活力指数,并显著降低吸胀冷害下REC和MDA含量,同时显著提高SOD和CAT的含量.(2)NO所提高的吸胀冷害处理后种子的SOD和CAT活性不能被RNA合成抑制剂放线菌素D和蛋白质合成抑制剂环己酰亚胺抑制.结果表明,NO可提高番茄种子抵抗吸胀冷害的能力,而且与NO激活了抗氧化系统有关,但NO不是通过促进抗氧化酶的合成来提高其活性.  相似文献   

3.
花生种子活力与贮藏蛋白质降解的关系   总被引:1,自引:0,他引:1  
花生种子吸胀2d后,子叶中肽链内切酶活性上升,贮藏蛋白质开始降解。高活力种子肽链内切酶活性在吸胀2d后迅速上升,至4d时达到高峰,而中等活力种子的肽链内切酶活性上升速度缓慢。高活力种子萌发时贮藏蛋白质降解速度高于中等活力种子。中等活力种子经PEG和PUT处理可提高种子活力,也促进了种子贮藏蛋白质降解能力的提高。  相似文献   

4.
以苦豆子和披针叶黄华种子为实验材料,在恒温25℃下吸胀,每24h取出吸胀种子,10d后未吸胀的种子为硬实种子(H),硬实种子用硫酸处理后恒温吸胀24h,与非硬实种子进行发芽试验和各项活力指标测定。结果显示:(1)每日内吸胀的种子数量随时间推移以一定比列下降,苦豆子非硬实种子吸胀速率较缓慢,第10天后吸胀率降到1%,披针叶黄华非硬实种子第3天后下降到1%,第9、10天突然上升后又下降到1%。(2)两种豆类种子都显示出硬实种子发芽率、发芽指数、活力指数、脱氢酶、呼吸速率、超氧化物歧化酶(SOD)均高于非硬实种子,而电导率、浸出液可溶性糖和丙二醛(MDA)均低于非硬实种子,缓慢吸胀的硬实种子活力指标高于快速吸胀的硬实种子。研究表明,硬实种子活力高于非硬实种子,硬实种子吸胀过程中存在吸胀损伤。而在非硬实种子中,根据以上活力指标判断,晚吸胀的种子比早吸胀的种子活力高。  相似文献   

5.
花生种子吸胀2d后,子叶中肽链内切酶活性上升,贮藏蛋白质开始降解。高活力种子肽链内切酶活性在吸胀2d后迅速上升,至4d时达到高峰,而中等活力种子的肽链内切酶活性上升速度绶慢。高活力种子萌发时贮藏蛋白质降解速度高于中等活力种子。中等活力种子经PEG和PUT处理可提高种子活力,也促进了种子贮藏蛋白质降解能力的提高。  相似文献   

6.
人工老化处理的卷心菜种子的热激蛋白合成   总被引:5,自引:0,他引:5  
高活力卷心菜种子蛋白质合成速率比中等活力和低活力种子高很多。热激处理(42℃)下,蛋白质合成显著下降,但高活力种子的蛋白质合成能力仍然显著高于中等和低活力种子。高活力和中等活力种子主要合成分子量为70 kD和一些小分子量的热激蛋白。在低活力种子中检测不到热激蛋白的合成。4种热激蛋白(1种HSP90和3种HSP70)的Western blot检测结果表明,只有1种热激蛋白(HSP70)与种子活力有关。  相似文献   

7.
研究了豌豆种子吸胀过程中脱水耐性的变化模式。种子在吸胀初期迅速吸收水分,然后缓慢吸收直到平台期。电解质渗漏速率在吸胀初期增加直到11h,然后随着吸胀下降。在吸胀过程中,种子的萌发率逐渐增加,种子和胚轴的脱水耐性逐渐丧失,10%和50%的种子和胚轴被脱水致死的含水量明显增加。赤霉素和脱落酸处理改变豌豆种子的萌发特性,提高胚轴的脱水耐性。研究结果表明,吸胀的豌豆种子脱水耐性的丧失是一种数量性状,正常性种子吸胀后脱水耐性的变化能够作为种子顽拗性研究的模式系统。  相似文献   

8.
将苦马豆和披针叶黄华种子在恒温25℃下吸胀,每24 h取出吸胀种子,16 d后未吸胀的种子为硬实种子(H),硬实种子用硫酸处理后恒温吸胀24 h,与非硬实种子进行发芽试验和各项活力指标测定。结果显示每日内吸胀的种子数量随时间推移以一定比列下降,苦马豆非硬实种子第3天后吸胀率下降到1%,第13~16天突然上升后又下降到1%,披针叶黄华非硬实种子第3天后下降到1%,第9、10天突然上升后又下降到1%。两种豆类都显示出硬实种子发芽率、发芽指数、活力指数、脱氢酶活性、呼吸速率和超氧化物歧化酶(SOD)活性均高于非硬实种子,而电导率、浸出液可溶性糖和丙二醛(MDA)含量低于非硬实种子,缓慢吸胀的硬实种子活力指标高于快速吸胀的硬实种子,这表明硬实种子活力高于非硬实种子,硬实种子吸胀过程中存在吸胀损伤。而在非硬实种子中,根据以上活力指标判断,晚吸胀的种子比早吸胀的种子活力高。  相似文献   

9.
人工老化自理的卷心菜种子的热激蛋白合成   总被引:3,自引:0,他引:3  
高活力卷心菜种子蛋白质合成速率比中等活力和低活力种子高很多。热激处理(42℃)下,蛋白质合成显著下降,但高活力种子的蛋白质合成能力仍然显著高于中等和低活力种子。高活力和中等活力种子主要合成分子量为70kD和一些小分子量的热激蛋白。在低活力种子中检测不到热激蛋白的合成。4种热激蛋白(1种HSP90和3种HSP70)的Western blot检测结果表明,只有1种热激蛋白(HSP70)与种子活力有关。  相似文献   

10.
用同位素前体标记吸涨不同时间的风干成熟稻胚以确定几种生物大分子合成的起始顺序。蛋白质合成在稻胚吸涨30 min即已开始,而RNA的大量合成则开始于吸涨7~8 h;在此之前,放线菌素D和蛹虫草菌素对蛋白质合成均无明显影响。这说明风干成熟稻胚含有贮藏RNA,而且,至少大部分贮藏mRNA具有Poly(A)片段。从吸涨8 h起,新合成的RNA开始取代贮藏RNA;到14 h,贮藏RNA已基本消失。~3H-胸苷的参入动态显示,稻胚DNA合成启始于吸涨后12 h。本文提出了水稻离体胚吸涨萌发(25℃)时生物大分子变化进程模式。  相似文献   

11.
在低温吸胀阶段,经PVA(聚乙烯醇)和PEG(聚乙二醇6000)预处理的大豆胚轴蛋白质合成和ATP含量均比对照高。在萌发阶段,胚轴生长增快,蛋白质合成明显加快,ATP迅速被消耗,而对照胚轴则相反。试验结果表明,预处理大豆种子萌发和生长与其蛋白质合成、ATP水平和消耗能力有密切关系。  相似文献   

12.
Deterioration of soybean [ Glycine max (L.) Merr. cv. Essex] seeds during accelerated aging at 41°C and 100% relative humidity predisposes the embryonic axis to injury during the initial period of imbibition. This injury was prevented or greatly reduced in severity when excised axes were imbibed on blotters containing 30% polyethylene glycol which slowed the rate of water uptake and when axes were pre-equilibrated to a high moisture level. Rates of water uptake by "high"(no treatment) and "low vigor"(accelerated aged) excised axes were identical. However, high vigor axes tolerated rapid water uptake during early imbition, whereas low vigor axes did not. Leakage of electrolytes during early imbibition was nearly six times greater in low than in high vigor axes. Polyethylene glycol significantly reduced the leakage of electrolytes from both low and high vigor axes. The data are in agreement with the hypothesis that seed deterioration in soybeans involves membrane changes which may predispose embryonic tissues to injury during imbibition. Reduction of the rate of water uptake during the initial period of imbibition would allow extra time for membrane repair or rearrangement, thus permitting the tissues to develop in a more orderly manner. The data indicate that deterioration in soybean seeds involves, at least in part, a decrease in ability of seed axes to tolerate rapid water uptake at the start of imbibition and that this weakness may be compensated by osmotic control of water uptake.  相似文献   

13.
The regulation of nucleic acid and protein synthesis in dormant, thermodormant, and after-ripened embryos of Vaccaria pyramidata (Caryophyllaceae) has been studied. Germination of after-ripened V. pyramidata seeds is prevented by inhibitors of protein, RNA, and DNA synthesis. The synthesis of both protein and RNA is activated at the beginning of imbibition, whereas [3H]thymidine incorporation does not start until the second period of the imbibition phase. [3H]Thymidine incorporation is greatly reduced in embryos treated with cycloheximide or 6-methylpurine. There is no correlation between the level of [3H]uracil and l-[14C]leucine incorporation into macromolecules and the physiological state of the seeds: tRNA, ribosomal RNA, and poly(A)-containing RNA (probably mRNA) as well as proteins are synthesized at the same rate in both dormant and thermodormant embryos as in after-ripened embryos. The protein patterns of dormant and after-ripened embryos are similar, as shown by electrophoresis and electrofocusing of double-labeled proteins. The level of DNA synthesis, measured as [3H]thymidine incorporation, may, on the other hand, indicate the physiological activity of the seeds: [3H]Thymidine is incorporated at a high rate in after-ripened embryos only and remains at a low level in dormant or thermodormant embryos. This correlation is, however, observed only in the axes. DNA synthesis in the cotyledons does not show any relation to the developmental stage of the seeds. These results are discussed in relation to the regulation of dormancy and after-ripening of seeds.  相似文献   

14.
Macromolecule syntheses, especially incorporation of radioactive labelled precursors into proteins, RNA and DNA were investigated. Some results on the action of phytohormones applied to dormant seeds and on the influence on water stress conditions by interruption of imbibition even before the radicle protrudes, on germination as well as on RNA and DNA synthesis were analysed. Benzylaminopurine and ethylene, applied in combination, could break dormancy of dormant seeds; a process which is correlated with the onset of DNA synthesis. Interruption of the imbibition during the time of onset of DNA synthesis (after 16 h of imbibition) did not impair the germination, and the protein, RNA and DNA syntheses started after reimbibition at that level which was reached at the interruption point. Only after a break in later phases (after 22 h of imbibition) a weak impairment of germination could be observed.  相似文献   

15.
The responses of two cultivars of soybean (Merr.) to a chilling treatment (4 C for first hour of imbibition) were compared. The germination of cv. Biloxi was unaffected by the treatment, while the germination of cv. Fiskeby was reduced. The phospholipid fatty acids of dry axes of the two cultivars were very similar, and, thus, could not be correlated with their responses to chilling. The fatty acid composition of chilling-tolerant Biloxi did not change over a subsequent 23-hour warm incubation, but there was a marked reduction in the unsaturated fatty acids of chilling-sensitive Fiskeby after 12 hours, which may be a symptom of deterioration. Protein synthesis in both cultivars was reduced by the chilling treatment. Redrying of Biloxi axes up to 18 hours after the onset of imbibition had no effect on their germination upon rehydration. Germination of Fiskeby axes was reduced by redrying after 8 hours of imbibition. After 7 months of dry storage of intact seeds, the sensitivity of the axes to chilling was retested. Biloxi axes had become chilling-sensitive, while the germination of Fiskeby axes was reduced to zero by the chilling treatment. A hypothesis is presented that imbibitional chilling sensitivity is an indication of reduced vigor, axes with a high vigor can tolerate the stress, while those without cannot.  相似文献   

16.
Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25°. The early imbibitional stage is critical; imbibition at 25° followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population.  相似文献   

17.
Precise knowledge of seed quality after harvest and during storageis of particular importance for seed producers. We analyseddifferent sunflower seed lots (Helianthus annuusL.) characterizedby extremes of germination ability. We used RNA analysis tostudy possible changes in gene expression in seeds unable togerminate. Total RNA content was very small in dry seeds showinga low germination ability. Capacity for total RNA synthesisat the onset of imbibition was also reduced in these seeds.In addition, correlations were found between these parametersand germination ability at 19 °C. We demonstrated a highcorrelation between the amount of total RNA in the dry seed,the capacity of RNA synthesis at the onset of imbibition andthe seed moisture content at the time of the harvest. The abilityof dry seed mRNAs to be translatedin vitrowas also reduced andseven polypeptides, from stored mRNAs, were characteristic ofthe cotyledons from high germinability seeds. Germination canthus be affected at several levels including membrane, enzymaticand nucleic acid deteriorations. Gene expression; germination ability; Helianthus annuusL.; marker; protein; RNA; seed; sunflower  相似文献   

18.
The relationships between protein- and RNA synthesis and the germination behaviour of lettuce seeds were studied. Protein synthesis starts right at the beginning of imbibition and increases until the radicle protrudes. According to our results the causes for a blocked development of scotodormant lettuce seeds cannot be seen in a generally reduced protein or RNA synthesis.  相似文献   

19.
The relationships between DNA synthesis and germination capacity ofAgrostemma seeds have been studied. Protein synthesis and RNA synthesis are activated at the very beginning of imbibition, whereas DNA synthesis starts in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30° C), or aged seeds with a low germination capacity are characterized by a remarkably reduced protein synthesis. DNA synthesis is also reduced. The inhibition of protein-synthesis ofAgrostemma embryos fed with cycloheximid or actinomycin D causes a depression of DNA synthesis. These results indicate that the initiation of DNA synthesis of imbibingAgrostemma seeds depends on the synthesis of special proteins. Abscisic acid inhibits growth as well as DNA synthesis of isolatedAgrostemma embryos. Mitomycin inhibits germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also show a reduced incorporation of3H-thymidine in DNA. We suggest that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, is involved in the mechanism of afterripening of theAgrostemma seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号