首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A method of in vitro translation scanning was applied to a variety of polytopic integral membrane proteins, a transition metal P type ATPase from Helicobacter pylori, the SERCA 2 ATPase, the gastric H+,K+ ATPase, the CCK-A receptor and the human ileal bile acid transporter. This method used vectors containing the N terminal region of the gastric H+,K+ ATPase or the N terminal region of the CCK-A receptor, coupled via a linker region to the last 177 amino acids of the β-subunit of the gastric H+,K+ ATPase. The latter contains 5 potential N-linked glycosylation sites. Translation of vectors containing the cDNA encoding one, two or more putative transmembrane domains in the absence or presence of microsomes allowed determination of signal anchor or stop transfer properties of the putative transmembrane domains by the molecular weight shift on SDS PAGE. The P type ATPase from Helicobacter pylori showed the presence of 8 transmembrane segments with this method. The SERCA 2 Ca2+ ATPase with this method had 9 transmembrane co-translational insertion domains and coupled with other evidence these data resulted in a 11 transmembrane segment model. Translation of segments of the gastric H+,K+ ATPase provided evidence for only 7 transmembrane segments but coupled with other data established a 10 membrane segment model. The G7 protein, the CCK-A receptor showed the presence of 6 of the 7 transmembrane segments postulated for this protein. Translation of segments of the human ileal bile acid transporter showed the presence of 8 membrane insertion domains. However, translation of the intact protein provided evidence for an odd number of transmembrane segments, resulting in a tentative model containing 7 or 9 transmembrane segments. Neither G7 type protein appeared to have an arrangement of sequential topogenic signals consistent with the final assembled protein. This method provides a useful addition to methods of determining membrane domains of integral membrane proteins but must in general be utilized with other methods to establish the number of transmembrane α-helices.  相似文献   

2.
Abstract

The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences.

To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations.

The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions.

The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor.  相似文献   

3.
Background

Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest machine learning-based approaches, which have difficulty handling highly multi-class and few-shot learning problems. To address this issue, we propose C-Norm, a new neural approach which synergistically combines standard and weak supervision, ontological knowledge integration and distributional semantics.

Results

Our approach greatly outperforms all methods evaluated on the Bacteria Biotope datasets of BioNLP Open Shared Tasks 2019, without integrating any manually-designed domain-specific rules.

Conclusions

Our results show that relatively shallow neural network methods can perform well in domains that present highly multi-class and few-shot learning problems.

  相似文献   

4.

Heparin, an anticoagulant drug, is biosynthesized in selected animal cells. The heparin biosynthetic enzymes mainly consist of sulfotransferases and all are integral transmembrane glycoproteins. These enzymes are generally produced in engineered Escherichia coli as without their transmembrane domains as non-glycosylated fusion proteins. In this study, we used the yeast, Komagataella pastoris, to prepare four sulfotransferases involved in heparin biosynthesis as glycoproteins. While the yields of these yeast-expressed enzymes were considerably lower than E. coli-expressed enzymes, these enzymes were secreted into the fermentation media simplifying their purification and were endotoxin free. The activities of these sulfotransferases, expressed as glycoproteins in yeast, were compared to the bacterially expressed proteins. The yeast-expressed sulfotransferase glycoproteins showed improved kinetic properties than the bacterially expressed proteins.

  相似文献   

5.
There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.  相似文献   

6.
Summary

Twenty-one sequenced protein members of the epithelial Na+ channel (ENaC) family have been identified and characterized in terms of their sizes, hydropathy profiles, sequence similarities and phylogenies. These proteins derive from mammals, the frog Xenopus laevis and the worm Caenorhabditis elegans. The eleven sequenced vertebrate proteins fall into four subfamilies designated α, β, γ, and δ. The 10 C. elegans proteins do not cluster with the vertebrate proteins, and they all proved to be distantly related to each other. Nonetheless, the 21 ENaC proteins exhibit the same apparent topology, each with two transmembrane spanning segments separated by a large extracellular loop. All but two ENaC proteins possess highly conserved extracellular domains containing numerous conserved cysteine residues as well as adjacent C-terminal amphipathic transmembrane spanning segments, postulated to contribute to the formation of the hydrophilic pores of these oligomeric channel protein complexes. It is proposed that the well-conserved extracellular domains serve as receptors to control the activities of the channels. A topological model for the ENaC family proteins is presented.  相似文献   

7.
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.  相似文献   

8.
Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the α and β subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin αIIβ and β3 transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the α subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.  相似文献   

9.
ABSTRACT

The ADAMs family belongs to the transmembrane protein superfamily of zinc-dependent metalloproteases, which consists of multiple domains. These domains have independent but complementary functions that enable them to participate in multiple biological processes. Among them, ADAM9 can not only participate in the degradation of extracellular matrix as a metalloprotease, but also mediate tumor cell adhesion through its deintegrin domain, which is closely related to tumor invasion and metastasis. It is widely expressed in a variety of tumor cells and can affect the proliferation, invasion and metastasis of related cancer cells. We provide our views on current progress, its increasing importance as a strategic treatment goal, and our vision for the future of ADAM9.  相似文献   

10.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

11.

Background  

We introduce a computational protocol for effective predictions of the supramolecular organization of integral transmembrane proteins, starting from the monomer. Despite the demonstrated constitutive and functional importance of supramolecular assemblies of transmembrane subunits or proteins, effective tools for structure predictions of such assemblies are still lacking. Our computational approach consists in rigid-body docking samplings, starting from the docking of two identical copies of a given monomer. Each docking run is followed by membrane topology filtering and cluster analysis. Prediction of the native oligomer is therefore accomplished by a number of progressive growing steps, each made of one docking run, filtering and cluster analysis. With this approach, knowledge about the oligomerization status of the protein is required neither for improving sampling nor for the filtering step. Furthermore, there are no size-limitations in the systems under study, which are not limited to the transmembrane domains but include also the water-soluble portions.  相似文献   

12.
Irregularities in K+ currents form the basis of several cardiovascular dysfunctions, among which are arrhythmias and vasospasms. The developmental regulation of voltage-gated K+ channels, however, has been difficult to study. A novel approach was therefore employed to examine these channels in muscle tissue. Primers for a PCR-based analysis were designed using published nucleic acid sequences for voltage-gated K+ channels. Final selection of the primer pairs was based on the homology present in the S4 and H5 transmembrane domains. A specific band was amplified with these primers using RNA isolated from both rat A10 vascular smooth muscle cells and rat heart tissue.  相似文献   

13.
The receptor tyrosine kinase p185c-neu can be constitutively activated by the transmembrane domain mutation Val664→ Glu, found in the oncogenic mutant p185neu. This mutation is predicted to allow intermolecular hydrogen bonding and receptor dimerization. Understanding the activation of p185c-neu has assumed greater relevance with the recent observation that achondroplasia, the most common genetic form of human dwarfism, is caused by a similar transmembrane domain mutation that activates fibroblast growth factor receptor (FGFR) 3. We have isolated novel transforming derivatives of p185c-neu using a large pool of degenerate oligonucleotides encoding variants of the transmembrane domain. Several of the transforming isolates identified were unusual in that they lacked a Glu at residue 664, and others were unique in that they contained multiple Glu residues within the transmembrane domain. The Glu residues in the transforming isolates often exhibited a spacing of seven residues or occurred in positions likely to represent the helical interface. However, the distinction between the sequences of the transforming clones and the nontransforming clones did not suggest clear rules for predicting which specific sequences would result in receptor activation and transformation. To investigate these requirements further, entirely novel transmembrane sequences were constructed based on tandem repeats of simple heptad sequences. Activation was achieved by transmembrane sequences such as [VVVEVVA]n or [VVVEVVV]n, whereas activation was not achieved by a transmembrane domain consisting only of Val residues. In the context of these transmembrane domains, Glu or Gln were equally activating, while Lys, Ser, and Asp were not. Using transmembrane domains with two Glu residues, the spacing between these was systematically varied from two to eight residues, with only the heptad spacing resulting in receptor activation. These results are discussed in the context of activating mutations in the transmembrane domain of FGFR3 that are responsible for the human developmental syndromes achondroplasia and acanthosis nigricans with Crouzon Syndrome.  相似文献   

14.

Background  

Proteins of the tetraspanin family contain four transmembrane domains (TM1-4) linked by two extracellular loops and a short intracellular loop, and have short intracellular N- and C-termini. While structure and function analysis of the larger extracellular loop has been performed, the organization and role of transmembrane domains have not been systematically assessed.  相似文献   

15.
Interactions between domains of ATP-binding cassette (ABC) transporters are of great functional importance and yet are poorly understood. To gain further knowledge of these protein–protein interactions, we studied the inner membrane complex of the maltose transporter of Escherichia coli . We focused on interactions between the nucleotide-binding protein, MalK, and the transmembrane proteins, MalF and MalG. We incubated purified MalK with inverted membrane vesicles containing MalF and MalG. MalK bound specifically to MalF and MalG and reconstituted a functional complex. We used this approach and limited proteolysis with trypsin to show that binding and hydrolysis of ATP, inducing conformational changes in MalK, modulate its interaction with MalF and MalG. MalK in the reconstituted complex was less sensitive to protease added from the cytoplasmic side of the membrane, and one proteolytic cleavage site located in the middle of a putative helical domain of MalK was protected. These results suggest that the putative helical domain of the nucleotide-binding domains is involved, through its conformational changes, in the coupling between the transmembrane domains and ATP binding/hydrolysis at the nucleotide-binding domains.  相似文献   

16.
Two ZIP (Zrt, Irt-like Protein) cDNAs were isolated from rice (Oryza sativa L.) by RT-PCR approach, and named as OsZIP7a and OsZIP8 respectively. The predicted proteins of OsZIP7a and OsZIP8 consist of 384 and 390 amino acid residues respectively, and display high similarity to other plant ZIP proteins. Each protein contains eight transmembrane (TM) domains and a highly conserved ZIP signature motif, with a histidine-rich region in the variable region between TM domains III and IV. By semi-quantitative RT-PCR approach, it was found that the expression of OsZIP7a was significantly induced in rice roots by iron-deficiency, while that of OsZIP8 induced in both rice roots and shoots by zinc-deficiency. When expressed in yeast cells, OsZIP7a and OsZIP8 could complement an iron-uptake-deficient yeast mutant and a zinc-uptake-deficient yeast mutant respectively. It suggested that the OsZIP7a and OsZIP8 might encode an iron and a zinc transporter protein in rice respectively. Xia Yang and Ji Huang are contributed equally to this work.  相似文献   

17.
The x-ray structure of NccX, a type II transmembrane metal sensor, from Cupriavidus metallidurans 31A has been determined at a resolution of 3.12 Å. This was achieved after solubilization by dodecylphosphocholine and purification in the presence of the detergent. NccX crystal structure did not match the model based on the extensively characterized periplasmic domain of its closest homologue CnrX. Instead, the periplasmic domains of NccX appeared collapsed against the hydrophobic transmembrane segments, leading to an aberrant topology incompatible with membrane insertion. This was explained by a detergent-induced redistribution of the hydrophobic interactions among the transmembrane helices and a pair of hydrophobic patches keeping the periplasmic domains together in the native dimer. Molecular dynamics simulations performed with the full-length protein or with the transmembrane segments were used along with in vivo homodimerization assays (TOXCAT) to evaluate the determinants of the interactions between NccX protomers. Taken as a whole, computational and experimental results are in agreement with the structural model of CnrX where a cradle-shaped periplasmic metal sensor domain is anchored into the inner membrane by two N-terminal helices. In addition, they show that the main determinant of NccX dimerization is the periplasmic soluble domain and that the interaction between transmembrane segments is highly dynamic. The present work introduces a new crystal structure for a transmembrane protein and, in line with previous studies, substantiates the use of complementary theoretical and in vivo investigations to rationalize a three-dimensional structure obtained in non-native conditions.  相似文献   

18.
Receptor tyrosine kinases (RTKs) play an important role in intercellular signal transduction through the plasma membrane. RTKs are integral membrane proteins activated upon lateral homo- or heterodimerization involving their transmembrane domain. The polymorphism and mutations in RTK transmembrane (TM) domains are directly associated with a number of human diseases. The family of epidermal growth factor receptors, ErbB, is an important class of RTKs participating in human cell growth, development, and differentiation. In order to investigate the influence of pathogenic mutations in ErbB TM domains on the structural and dynamic properties of these receptors and on specific interactions of their TM domains, we have developed highly effective systems of bacterial expression and purification of recombinant transmembrane fragments ErbB2641–684 with pro-oncogenic substitution of Val659 by Glu or Gln. Transmembrane fragments were obtained in Escherichia coli BL21 (DE3) pLysS as a fusion protein with thioredoxin A. The purification protocol includes immobilized metal ion affinity chromatography (IMAC) and cation-exchange chromatography. The application of the protease Thrombin for hybrid protein hydrolysis considerably reduces financial expenditure as compared to the analogous protocols. The described techniques allow obtaining the milligram quantities of ErbB2 transmembrane fragments and its 15N-/[15N, 13C]-isotope-labeled derivatives for the analysis of their spatial structure using high-resolution heteronuclear NMR spectroscopy in a membrane-mimicking milieu.  相似文献   

19.
The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a ”rhombic” tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures.  相似文献   

20.
A three-dimensional structure of the human melanocortin 4 receptor (hMC4R) is constructed in this study using a computer-aided molecular modeling approach. Human melanocortin 4 receptor is a G Protein-Coupled Receptor (GPCR). We structurally aligned transmembrane helices with bovine rhodopsin transmembrane domains, simulated both intracellular and extracellular loop domains on homologous loop regions in other proteins of known 3D structure and modeled the C terminus on the corresponding part of bovine rhodopsin. Then tandem minimization and dynamics calculations were run to refine the crude structure. The simulative model was tested by docking with a triplet peptide (RFF) ligand. It was found that the ligand is located among transmembrane regions TM3, TM4, TM5, and TM6 of hMC4R. In consistence with mutational and biochemical data, binding site is mainly formed as a hydrophobic and negatively charged pocket. The model constructed here might provide a structural framework for making rational predictions in relevant fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号