首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, search for efficient pharmaceuticals against hepatitis C virus (HCV) is an urgent task. In addition to conventional medicines, such as interferon and ribavirin, new specific drugs are being developed. Recently, it has been shown that a peptidomimetic substance, competitive inhibitor of viral NS3 protease, efficiently suppresses replication of the viral RNA replicon in Huh-7 cells. Computer simulation of the operation of the gene network comprising major processes of the viral RNA in the cell provides grounds for analysis of the HCV life cycle and search for key targets for efficient attack with drugs. The gene network of viral RNA replication in Huh-7 cells in the presence of a highly specific and efficient viral NS3 protease inhibitor has been reconstructed by analysis of reported experimental results and application of the GenNet technology. A mathematical model describing the operation of this network has been developed. The kinetics of the decrease in the level of viral RNA in the presence of the inhibitor predicted on the basis of this model is close to experimental results.  相似文献   

2.
3.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

4.
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection.  相似文献   

5.
Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at least two groups by their effect on replication efficiency and cooperativity: (i). mutations in NS3 with a low impact on replication but that enhanced replication cooperatively when combined with highly adaptive mutations and (ii). mutations in NS4B, -5A, and -5B, causing a strong increase in replication but being incompatible with each other. In addition to adaptive mutations, we found that the host cell plays an equally important role for efficient RNA replication. We tested several passages of the same Huh-7 cell line and found up to 100-fold differences in their ability to support replicon amplification. These differences were not due to variations in internal ribosome entry site-dependent translation or RNA degradation. In a search for cellular factor(s) that might be responsible for the different levels of permissiveness of Huh-7 cells, we found that replication efficiency decreased with increasing amounts of transfected replicon RNA, indicating that viral RNA or proteins are cytopathic or that host cell factors in Huh-7 cells limit RNA amplification. In summary, these data show that the efficiency of HCV replication in cell culture is determined both by adaptation of the viral sequence and by the host cell itself.  相似文献   

6.
The hepatitis C virus NS2/3 protease is responsible for cleavage of the viral polyprotein between nonstructural proteins NS2 and NS3. We show here that mutation of three highly conserved residues in NS2 (His(952), Glu(972), and Cys(993)) abrogates NS2/3 protease activity and that introduction of any of these mutations into subgenomic NS2-5B replicons results in complete inactivation of NS2/3 processing and RNA replication in both stable and transient replication assays. The effect of uncleaved NS2 on the various activities of NS3 was therefore explored. Unprocessed NS2 had no significant effect on the in vitro ATPase and helicase activities of NS3, whereas immunoprecipitation experiments demonstrated a decreased affinity of NS4A for uncleaved NS2/3 as compared with NS3. This subsequently resulted in reduced kinetics in an in vitro NS3 protease assay with the unprocessed NS2/3 protein. Interestingly, NS3 was still capable of efficient processing of the polyprotein expressed from a subgenomic replicon in Huh-7 cells in the presence of uncleaved NS2. Notably, we show that fusion with NS2 leads to the rapid degradation of NS3, whose activity is essential for RNA replication. Finally, we demonstrate that uncleaved NS2/3 degradation can be prevented by the addition of a proteasome inhibitor. We therefore propose that NS2/3 processing is a critical step in the viral life cycle and is required to permit the accumulation of sufficient NS3 for RNA replication to occur. The regulation of NS2/3 cleavage could constitute a novel mechanism of switching between viral RNA replication and other processes of the hepatitis C virus life cycle.  相似文献   

7.

Background

Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone.

Results

The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP) labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA.

Conclusion

Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular expression of this recombinant antibody offers a potential antiviral strategy to inhibit intracellular HCV replication and production.  相似文献   

8.
Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding activities of the C-terminal NS3 helicase domain (NS3hel). To determine whether NS3hel enhances the NS3 serine protease activity, we purified truncated and full-length NS3-4A complexes and examined their serine protease activities under a variety of salt and pH conditions. Our results indicate that the helicase domain enhances serine protease activity, just as the protease domain enhances helicase activity. Thus, the two enzymatic domains of NS3-4A are highly interdependent. This is the first time that such a complete interdependence has been demonstrated for a multifunctional, single chain enzyme. NS3-4A domain interdependence has important implications for function during the viral lifecycle as well as for the design of inhibitor screens that target the NS3-4A protease.  相似文献   

9.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.  相似文献   

10.
Replication of the hepatitis C virus (HCV) genome has been proposed to take place close to the membrane of the endoplasmic reticulum in membrane-associated replicase complexes, as is the case with several other plus-strand RNA viruses, such as poliovirus and flaviviruses. The most obvious benefits of this property are the possibility of coupling functions residing in different polypeptidic chains and the sequestration of viral proteins and nucleic acids in a distinct cytoplasmic compartment with high local concentrations of viral components. Indeed, HCV nonstructural (NS) proteins were clearly colocalized in association with membranes derived from the endoplasmic reticulum. This observation, together with the demonstration of the existence of several physical interactions between HCV NS proteins, supports the idea of assembly of a highly ordered multisubunit protein complex(es) probably involved in the replication of the viral genome. The objective of this study, therefore, was to examine all potential interactions between HCV NS proteins which could result in the formation of a replication complex(es). We identified several interacting viral partners by using a glutathione S-transferase pull-down assay, by in vitro and ex vivo coimmunoprecipitation experiments in adenovirus-infected Huh-7 cells allowing the expression of HCV NS proteins, and, finally, by using the yeast two-hybrid system. In addition, by confocal laser scanning microscopy, NS proteins were clearly shown to colocalize when expressed together in Huh-7 cells. We have been able to demonstrate the existence of a complex network of interactions implicating all six NS proteins. Our observations confirm previously described associations and identify several novel homo- and heterodimerizations.  相似文献   

11.
Hepatitis C virus (HCV) NS5A has been reported to be important for the establishment of replication by adaptive mutations or localization, although its role in viral replication remains unclear. It was previously reported that NS5A interacts with NS5B via two regions of NS5A in the isolate JK-1 and modulates the activity of NS5B RdRp (Y. Shirota et al., J. Biol. Chem., 277:11149-11155, 2002), but the biological significance of this interaction has not been determined. In this study, we addressed the effect of this interaction on HCV RNA replication with an HCV replicon system derived from the isolate M1LE (H. Kishine et al., Biochem. Biophys. Res. Commun., 293:993-999, 2002). We constructed three internal deletion mutants, M1LE/5Adel-1 and M1LE/5Adel-2, each encoding NS5A which cannot bind NS5B, and M1LE/5Adel-3, encoding NS5A that can bind NS5B. After transfection into Huh-7 cells, M1LE/5Adel-3 was replication competent, but both M1LE/5Adel-1 and M1LE/5Adel-2 were not. Next we prepared 20 alanine-substituted clustered mutants within both NS5B-binding regions and examined the effect of these mutants on HCV RNA replication. Only 5 of the 20 mutants were replication competent. Subsequently, we introduced a point mutation, S225P, a deletion of S229, or S232I into NS5A and prepared cured Huh-7 cells that were cured of RNA replication by alpha interferon. Finally, with these point mutations and cured cells, we established a highly improved replicon system. In this system, only the same five mutants were replication competent. These results strongly suggest that the interaction between NS5A and NS5B is critical for HCV RNA replication in the HCV replicon system.  相似文献   

12.
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.  相似文献   

13.
Hepatitis C virus (HCV) genotype 1 (subtypes 1a and 1b) is responsible for the majority of treatment-resistant liver disease worldwide. Thus far, efficient HCV RNA replication has been observed only for subgenomic and full-length RNAs derived from genotype 1b isolates. Here, we report the establishment of efficient RNA replication systems for genotype 1a strain H77. Replication of subgenomic and full-length H77 1a RNAs required the highly permissive Huh-7.5 hepatoma subline and adaptive amino acid substitutions in both NS3 and NS5A. Replication could be detected by RNA quantification, fluorescence-activated cell sorting, and metabolic labeling of HCV-specific proteins. Replication efficiencies were similar for subgenomic and full-length RNAs and were most efficient for HCV RNAs lacking heterologous RNA elements. Interestingly, both subtype 1a and 1b NS3 adaptive mutations are surface exposed and present on only one face of the NS3 structure. The cell culture-adapted subtype 1a replicons should be useful for basic replication studies and for antiviral development. These results are also encouraging for the development of adapted replicons for the remaining HCV genotypes.  相似文献   

14.
15.
The emerging of hepatitis C virus (HCV) resistant strains has been considered as a main drawback of the available drugs. Since HCV has a large inactive surface, we would like to hypothesis that the mutation occur in HCV is minimal and causing less resistance against inhibition. In this study, a short peptide inhibitor of HCV namely plectasin was identified by HCV NS3-4A serine protease assay. Plectasin peptide showed considerable inhibition against HCV NS3-4A serine protease. Enzymatic activity of the recombinant NS3-4Apro was analysed by fluorescence release from several fluorogenic peptide substrates which resembling the dibasic cleavage site sequences of the flavivirus polyprotein precursor. Of all amc-labelled peptides, Pyr-RTKR-amc was the most efficiently cleaved substrate with the lowest Km value of 20 µM. The kinetic assay showed that plectasin peptide inhibited NS3-4Apro activity with an IC50 value of 4.3 μM compared to the aprotinin as a standard proteases inhibitor with an IC50 of 6.1 μM. From the results, plectasin peptide also demonstrated a dose-dependent inhibition of HCV replication with a considerable reduction in RLuc activity at 15 µM using HCV replicon- containing Huh-7 cells. Our study has identified a unique natural peptide that can be used to highlight novel structures for the development of drug derivatives with high efficacy of HCV NS3-4A protease inhibitors.  相似文献   

16.
Nonstructural (NS) protein 3 is a DEXH/D-box motor protein that is an essential component of the hepatitis C viral (HCV) replicative complex. The full-length NS3 protein contains two functional modules, both of which are essential in the life cycle of HCV: a serine protease domain at the N terminus and an ATPase/helicase domain (NS3hel) at the C terminus. Truncated NS3hel constructs have been studied extensively; the ATPase, nucleic acid binding, and helicase activities have been examined and NS3hel has been used as a target in the development of antivirals. However, a comprehensive comparison of NS3 and NS3hel activities has not been performed, so it remains unclear whether the protease domain plays a vital role in NS3 helicase function. Given that many DEXH/D-box proteins are activated upon interaction with cofactor proteins, it is important to establish if the protease domain acts as the cofactor for stimulating NS3 helicase function. Here we show that the protease domain greatly enhances both the direct and functional binding of RNA to NS3. Whereas electrostatics plays an important role in this process, there is a specific allosteric contribution from the interaction interface between NS3hel and the protease domain. Most importantly, we establish that the protease domain is required for RNA unwinding by NS3. Our results suggest that, in addition to its role in cleavage of host and viral proteins, the NS3 protease domain is essential for the process of viral RNA replication and, given its electrostatic contribution to RNA binding, it may also assist in packaging of the viral RNA.  相似文献   

17.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.  相似文献   

18.
Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.  相似文献   

19.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr330 (Tyr2306 in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr330.  相似文献   

20.
Lee KJ  Choi J  Ou JH  Lai MM 《Journal of virology》2004,78(7):3797-3802
Hepatitis C virus (HCV) RNA replication is dependent on the enzymatic activities of the viral RNA-dependent RNA polymerase NS5B, which is a membrane-anchored protein. Recombinant NS5B lacking the C-terminal transmembrane domain (21 amino acids) is enzymatically active. To address the role of this domain in HCV replication in vivo, we introduced a series of mutations into the NS5B of an HCV subgenomic replicon and examined the replication capabilities of the resultant mutants by a colony formation assay. Replicons lacking the transmembrane domain did not yield any colonies. Furthermore, when Huh-7 cells harboring the HCV subgenomic replicon were treated with a synthetic peptide consisting of the NS5B transmembrane domain fused to the antennapedia peptide, the membrane association of NS5B was completely disrupted. Correspondingly, the HCV RNA titer was reduced by approximately 50%. A scrambled peptide used as a control did not have any effects. These findings suggest that the membrane association of NS5B facilitates HCV RNA synthesis. However, a related transmembrane domain derived from bovine viral diarrhea virus could not replace the HCV NS5B transmembrane segment. This finding suggests that the C-terminal 21 amino acids not only have a membrane-anchoring function but also may perform additional functions for RNA synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号