首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
G. Morel  G. Pelletier 《Peptides》1986,7(6):1197-1199
The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system.  相似文献   

2.
Summary We report here on cholinergic neurons in the rat hippocampal formation that were identified by immunocytochemistry employing a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme. In general, ChAT-immunoreactive cells were rare, but were observed in all layers of the hippocampus proper and fascia dentata with a preponderance in zones adjacent to the hippocampal fissure and in the part of CA1 bordering the subiculum. All immunoreactive cells found were non-pyramidal neurons. They were relatively small with round or ovoid perikarya, which gave rise to thin spine-free dendrites. These hippocampal neurons were very similar to ChAT-immunoreactive cells in the neocortex of the same animals but were quite different from cholinergic neurons in the basal forebrain, medial septal nucleus, and neostriatum, which were larger and more intensely immunostained.Electron-microscopic analysis of ChAT-immunoreactive cells in the hippocampus and fascia dentata revealed synaptic contacts, mainly of the asymmetric type, on cell bodies and smooth proximal dendrites. The nuclei of the immunoreactive cells exhibited deep indentations, which are characteristic for non-pyramidal neurons.Our results provide evidence for an intrinsic source of the hippocampal cholinergic innervation in addition to the well-established septo-hippocampal cholinergic projection.Dr. C. Léránth is on leave of absence from the First Department of Anatomy, Semmelweis University Medical School, H-1450 Budapest, Hungary  相似文献   

3.
杨天明 《生命科学》2014,(12):1266-1272
近年来神经科学领域的进展表明,大脑中不仅存在如位置神经元之类的特异性编码感觉信息的神经元,也存在能够特异性地反映动物思考过程的神经元。在一系列以侧内顶叶(LIP)为目标的猕猴电生理实验中,人们发现LIP神经元的动作电位发放率可以反映抉择思考的过程。抉择的研究为我们打开了一个研究大脑高级认知功能的窗口。抉择神经元的发现表明了大脑的高级认知功能是基于与感觉信息处理类似的神经计算原理。  相似文献   

4.
5.
1.  Intracellular recordings from identified eye muscle motoneurons provide evidence that they are monosynaptically driven by the primary sensory axons from the thread hair receptors in the statocyst.
2.  The eye muscle motoneurons are either depolarized or actively hyperpolarized following irrigation of the Statocyst canals. The hyperpolarization of the motoneurons is brought about by the Statocyst receptors themselves either acting directly on the motoneurons or via inhibitory neurons.
  相似文献   

6.
A new peptidergic paraventriculo-infundibular system has been revealed using anti-corticoliberin (CRF) antibodies. The localization of its perikarya in the paraventricular nuclei as well as the distribution of its fibres and perivascular nerve-endings within the median eminence are different from those of other systems stained with antibodies directed against gonadoliberin, somatostatin, vasopressin or oxytocin.  相似文献   

7.
8.
(3H) Thymidine is incorporated into some cerebellar Purkinje cells of 6- to 30-day-old rats. The frequency of labelled neuronal nuclei was higher in the 12- to 30-day old rats than in the 6- to 10-day-old animals. The grain distribution pattern in autoradiographs was mostly nucleolar amounting to three to ten grains. Some other local labels were revealed, too. Only six Purkinje cells among 42,000 studied in 21 rats possessed heavy label (25 to 50 grains) distributed throughout the nucleus. Control estimations with deoxyribonuclease, hot perchloric acid and covering the autoradiographs again established that the Purkinje cells synthesize DNA perhaps for the purpose of DNA surplus accumulation and/or DNA repair in the neurons.  相似文献   

9.
10.
Mammalian ovarian function is regulated by both hormonal inputs and direct neural influences. Recent studies have shown that, in addition to the extrinsic innervation, the ovaries of nonhuman primates and a strain of rats contain a discrete population of intrinsic neurons. In the present study, we used histological and immunohistochemical approaches to identify the presence of neuronal cell bodies in the fetal and neonatal human ovary. Neurons containing neurofilament immunoreactivity were detected in the hilum and medulla of the ovary at all ages studied, ranging from 24 weeks of gestation to 10 months of postnatal age. Most of them coexpressed the low affinity neurotrophin receptor (p75NTR), and some were catecholaminergic, as determined by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. The presence of intrinsic neurons in the human ovary, similar to those previously found in other species, indicates that they may be engaged in regulating common, phylogenetically conserved, ovarian functions. It also raises the possibility that their dysfunction may contribute to the manifestation of particular ovarian pathologies.  相似文献   

11.
12.
Previous studies suggest that cholinergic neurons in the diagonal band of Broca (DBB) participate in the baroreceptor-mediated inhibition of phasic vasopressin neurons in the supraoptic nucleus (SON). To test this hypothesis, extracellular recordings were obtained from putative vasopressin SON neurons of anesthetized rats injected with the cholinergic immunotoxin 192 IgG-saporin (0.8 microg/microl) in the DBB. Baroreceptor sensitivity of neurons was tested with brief phenylephrine-induced (10 microg/10 microl iv) increases in blood pressure of at least 40 mmHg. In rats injected with vehicle or unconjugated saporin, 19 of 21 and 18 of 20 phasic neurons, respectively, were inhibited by increased blood pressure. In rats injected with 192 IgG-saporin, which significantly reduced the number of choline acetyltransferase (ChAT)-positive DBB neurons, 33 of 36 phasic neurons were inhibited. Normal rats and rats with DBB saporin injections received rhodamine bead injections into the perinuclear zone (PNZ) to retrogradely label DBB neurons, and their brains were stained for ChAT. ChAT-positive DBB neurons were not retrogradely labeled from the PNZ. Together, these results indicate that the pathway relaying baroreceptor information to the SON involves noncholinergic DBB neurons.  相似文献   

13.
Among mental disorders, mental retardation has been shown to be caused by various factors including a large array of genetic mutations. On the basis of remarkable progress, the emerging view is that defects in the regulation of synaptic activity and morphogenesis of dendritic spines are apparently common features associated with mutations in several genes implicated in mental retardation. In this review, we will discuss X-linked MR-related gene products that are potentially involved in the normal structure and function of the synapses, with a particular focus on pre- and/or post-synaptic plasticity mechanisms. Progress in understanding the underlying conditions leading to mental retardation will undoubtedly be gained from a closer collaboration of geneticists, physiologists and cognitive neuroscientists, which should enable the establishment of standardized approaches.  相似文献   

14.
15.
Neurons immunoreactive with antisera against the crustacean peptide -pigment dispersing hormone fullfill several anatomical criteria proposed for circadian pacemakers in the brain of the cockroach Leucophaea maderae. These include position of somata, projections to the lamina and midbrain and possible coupling pathways between the two pacemakers through commissural fibers. In behavioral experiments combined with lesion studies and immunocytochemical investigations we examined whether the presence of pigment-dispersing hormone-immunoreactive arborizations in the midbrain of the cockroach correlates with the presence of circadian locomotor activity. No rhythm was detected after severing both optic stalks in any animal for at least 12 days. Within the same time pigment-dispersing hormone-immunoreactive fibers in the midbrain disappeared. Two to seven weeks after the operation some of the cockroaches regained circadian locomotor activity, while others remained arrhythmic. In all cockroaches which regained rhythmic behavior pigment-dispersing hormone-immunoreactive fibers had regenerated and had largely found their original targets within the brain. In all arrhythmic cockroaches either none or very little regeneration had occurred. The period of the regained circadian activity inversely correlated with the number of regenerated immunoreactive commissural fibers. These data provide further evidence for the involvement of pigment-dispersing hormone-immunoreactive neurons in circadian clocks of orthopteroid insects.Abbreviations DD constant darkness - PDH pigment-dispersing hormone - PDHLI pigmentdispersing hormone-like immunoreactivity - PDFL a pigment-dispersing factor containing cells in the lamina - PDFMe pigment-dispersing factor containing cells in the medulla - QV quantification value  相似文献   

16.
Although most imprinted genes display parent-origin-specific gene expression in tissues where they are transcribed, some genes are imprinted in a tissue-specific manner. Genes that show brain-specific imprinting or brain-specific lack of imprinting present a unique opportunity to study the process of imprinting during tissue differentiation. In this review, I introduce the systematic study of brain-cell-lineage-specific imprinting using a primary brain cell culture system, where neurons or glial cells are cultured separately. Two reports using the primary brain cell culture revealed brain-cell-lineage-specific imprinting in Ube3a and Igf2r, which had previously been described to show brain-specific imprinting and brain-specific lack of imprinting, respectively. Such brain-cell-lineage-specific imprinting was associated with cell-specific epigenetic modifications, especially with their reciprocally imprinted antisense non-coding RNAs, Ube3a-ATS and Air. These results emphasize the necessity of imprinting analysis at the cell level rather than in whole brain tissue during brain differentiation. The brain cell culture system provides us with a new powerful tool to understand the molecular mechanism of brain-specific imprinting.  相似文献   

17.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

18.
19.
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.  相似文献   

20.
The structure of the retinopetal system was studied in the lamprey (Lampetra fluviatilis) using the horseradish peroxydase technique of axonal transport. Anterograde axonal transport within the retinofugal fibers had first been cut off by chemical destruction of the retina or severing the optic nerve, thereby enabling observation of retinopetal fibers unmasked by labeled visual afferents. Central neurons of the retinopetal systems could thus be distinguished bilaterally in the periventricular tegmental area of the midbrain and the mesencephalic reticular zone. Retinopetal fibers were traced in the structure of the axial optic tract.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Laboratory of Sensory Psychophysiology, Paris University VI, Paris, France. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 723–727, November–December, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号