首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  相似文献   

2.
Dysfunction of the orexin/hypocretin neurotransmitter system leads to the sleep disorder narcolepsy. Narcolepsy is characterized by excessive daytime sleepiness and the occurrence of cataplexy--a sudden loss of muscle tone triggered by emotionally arousing events. Both symptoms can be treated with drugs that act on dopaminergic systems. Here we have investigated the effect of orexins on the firing of dopaminergic and GABAergic neurons of the substantia nigra (SN) in brain slices. Surprisingly, dopaminergic neurons in pars compacta were unaffected by orexins. In contrast, bath application of orexin A (100 nM) or orexin B (5-300 nM) greatly increased the firing rate of GABAergic neurons in pars reticulata. The orexin B-mediated excitation was unaffected by blocking synaptic transmission (using low-Ca2+/high-Mg2+ solution). However, the effect of orexin B was reduced significantly by thapsigargin (1 microM) and inhibitors of protein kinase A. The presence of orexinergic fibres in the SN pars reticulata was demonstrated by immunohistochemical methods with the fibre density increasing in the rostrocaudal direction. The orexin excitation of SN reticulata cells may help to maintain their high firing rate during waking. Furthermore, the absence of orexin effects in narcolepsy may predispose affected individuals to attacks of cataplexy.  相似文献   

3.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   

4.
Hypothalamic neurons that produce the peptide transmitters hypocretins/orexins have attracted much recent attention. They provide direct and predominantly excitatory inputs to all major brain areas except the cerebellum, with the net effect of stimulating wakefulness and arousal. These inputs are essential for generating sustained wakefulness in mammals, and defects in hypocretin signalling result in narcolepsy. In addition, new roles for hypocretins/orexins are emerging in reward-seeking, learning, and memory. Recent studies also indicate that hypocretin/orexin neurons can alter their intrinsic electrical activity according to ambient fluctuations in the levels of nutrients and appetite-regulating hormones. These intriguing electrical responses are perhaps the strongest candidates to date for the elusive neural correlates of after-meal sleepiness and hunger-induced wakefulness. Hypocretin/orexin neurons may thus directly translate rises and falls in body energy levels into different states of consciousness.  相似文献   

5.
Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.  相似文献   

6.
Recent studies using molecular genetics in mice and dogs, as well as histopathological analyses of human disease, have come to the same conclusion: the human sleep disorder narcolepsy is caused by failure of signaling mediated by orexin (hypocretin) neuropeptides. These and other findings strongly suggest that the orexin system plays a critical role in sleep/wake regulation. In addition, the orexin system may link energy homeostasis to the regulation of sleep/wake cycles.  相似文献   

7.
Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT), also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM) sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP) was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG). The first experiment utilized hypocretin knock-out (HCRT-ko) mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8) given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side) in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7) or wildtype mice (+177%; n = 9). However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls) and it was significantly correlated (r = 0.89) with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.  相似文献   

8.
The sleep disorder narcolepsy is now linked with a loss of neurons containing the neuropeptide hypocretin (also known as orexin). The hypocretin neurons are located exclusively in the lateral hypothalamus, a brain region that has been implicated in arousal based on observations made by von Economo during the viral encephalitic epidemic of 1916–1926. There are other neuronal phenotypes located in the lateral hypothalamus that are distinct and separate from the hypocretin neurons. Here the authors identify these neurons based on peptides and neurotransmitters that they express and review roles of these neurons in sleep. Given the heterogeneity of the neuronal phenotypes in the lateral hypothalamus, it is likely that hypocretin neurons, as well as other types of neurons in the lateral hypothalamus, influence sleep and provide state-dependent regulation of physiological functions.  相似文献   

9.
The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.  相似文献   

10.

Orexin is a neuropeptide that plays a highly important role in mechanisms that regulate sleep/wake states. Lack of the orexin gene or orexin-producing neurons (orexin neurons) results in narcolepsy in several mammalian species, suggesting that orexin is an important factor for the maintenance of wakefulness. Constitutive, ectopic expression of orexin in transgenic mice resulted in severe fragmentation of non–rapid eye movement sleep, along with abnormal muscle tone regulation during REM sleep, suggesting that activity of orexin neurons should be appropriately decreased during sleep to maintain consolidated sleep states. This review will discuss the mechanisms by which the orexin system is regulated during sleep.

  相似文献   

11.
The finding of orexin/hypocretin deficiency in narcolepsy patients suggests that this hypothalamic neuropeptide plays a crucial role in regulating sleep/wakefulness states. However, very little is known about the synaptic input of orexin/hypocretin-producing neurons (orexin neurons). We applied a transgenic method to map upstream neuronal populations that have synaptic connections to orexin neurons and revealed that orexin neurons receive input from several brain areas. These include the amygdala, basal forebrain cholinergic neurons, GABAergic neurons in the preoptic area, and serotonergic neurons in the median/paramedian raphe nuclei. Monoamine-containing groups that are innervated by orexin neurons do not receive reciprocal connections, while cholinergic neurons in the basal forebrain have reciprocal connections, which might be important for consolidating wakefulness. Electrophysiological study showed that carbachol excites almost one-third of orexin neurons and inhibits a small population of orexin neurons. These neuroanatomical findings provide important insights into the neural pathways that regulate sleep/wakefulness states.  相似文献   

12.
Linkage of human narcolepsy with HLA association to chromosome 4p13-q21   总被引:2,自引:0,他引:2  
Although narcolepsy is highly associated with human leukocyte antigen (HLA) DQ6/DQB1*0602 and/or DR2/DRB1*1501, most individuals with the HLA haplotype are free of narcolepsy. This indicates that HLA alone makes a relatively small contribution to the development of narcolepsy and that a non-HLA gene(s) can contribute to the genetic predisposition even in narcoleptic cases with HLA association. We conducted a genome-wide linkage search for narcolepsy in eight Japanese families with 21 DR2-positive patients (14 narcoleptic cases with cataplexy and 7 cases with an incomplete form of narcolepsy). A lod score of 3.09 suggested linkage to chromosome 4p13-q21. A lod score of 1.53 was obtained at the HLA-DRB1 locus, though this lod score may be biased since all the affected patients and many of the family members were DR2-positive. No other loci including hypocretin, hypocretin receptor 1, and hypocretin receptor 2 had lod scores greater than 1.0. The present study suggests that chromosome 4p13-q21 contains a second locus for HLA-associated human narcolepsy.  相似文献   

13.
L Lin  J Faraco  R Li  H Kadotani  W Rogers  X Lin  X Qiu  P J de Jong  S Nishino  E Mignot 《Cell》1999,98(3):365-376
Narcolepsy is a disabling sleep disorder affecting humans and animals. It is characterized by daytime sleepiness, cataplexy, and striking transitions from wakefulness into rapid eye movement (REM) sleep. In this study, we used positional cloning to identify an autosomal recessive mutation responsible for this sleep disorder in a well-established canine model. We have determined that canine narcolepsy is caused by disruption of the hypocretin (orexin) receptor 2 gene (Hcrtr2). This result identifies hypocretins as major sleep-modulating neurotransmitters and opens novel potential therapeutic approaches for narcoleptic patients.  相似文献   

14.
Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.   总被引:59,自引:0,他引:59  
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.  相似文献   

15.
Modulation of the promoter region of prepro-hypocretin by alpha-interferon   总被引:1,自引:0,他引:1  
Waleh NS  Apte-Deshpande A  Terao A  Ding J  Kilduff TS 《Gene》2001,262(1-2):123-128
  相似文献   

16.
The lack of the neuropeptide orexin, also known as hypocretin, results in narcolepsy, a chronic sleep disorder characterized by frequent sleep/cataplexy attacks and rapid eye movement sleep abnormalities. However, the downstream pathways of orexin signaling are not clearly understood. Here, we show that orexin activates the mTOR pathway, a central regulator of cell growth and metabolism, in the mouse brain and multiple recombinant cell lines that express the G protein-coupled receptors (GPCRs), orexin 1 receptor (OX1R) or orexin 2 receptor (OX2R). This orexin/GPCR-stimulated mTOR activation is sensitive to rapamycin, an inhibitor of mTOR complex 1 (mTORC1) but is independent of two well known mTORC1 activators, Erk and Akt. Rather, our studies indicate that orexin activates mTORC1 via extracellular calcium influx and the lysosome pathway involving v-ATPase and Rag GTPases. Moreover, a cytoplasmic calcium transient is sufficient to mimic orexin/GPCR signaling to mTORC1 activation in a v-ATPase-dependent manner. Together, our studies suggest that the mTORC1 pathway functions downstream of orexin/GPCR signaling, which plays a crucial role in many physiological and metabolic processes.  相似文献   

17.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

18.
Orexins, which were initially identified as endogenous peptide ligands for two orphan G-protein coupled receptors (GPCRs), have been shown to have an important role in the regulation of energy homeostasis. Furthermore, the discovery of orexin deficiency in narcolepsy patients indicated that orexins are highly important factors for the sleep/wakefulness regulation. The efferent and afferent systems of orexin-producing neurons suggest interactions between these cells and arousal centers in the brainstem as well as important feeding centers in the hypothalamus. Electrophysiological studies have shown that orexin neurons are regulated by humoral factors, including leptin, glucose, and ghrelin as well as monoamines and acetylcholin. Thus, orexin neurons have functional interactions with hypothalamic feeding pathways and monoaminergic/cholinergic centers to provide a link between peripheral energy balance and the CNS mechanisms that coordinate sleep/wakefulness states and motivated behavior such as food seeking.  相似文献   

19.
The discovery that hypocretins are involved in narcolepsy, a disorder associated with excessive daytime sleepiness, cataplexy and unusually rapid transitions to rapid-eye-movement sleep, opens a new field of investigation in the area of sleep control physiology. Hypocretin-1 and -2 (also called orexin-A and -B) are newly discovered neuropeptides processed from a common precursor, preprohypocretin. Hypocretin-containing cells are located exclusively in the lateral hypothalamus, with widespread projections to the entire neuroaxis. Two known receptors, Hcrtr1 and Hcrtr2, have been reported. The functional significance of the hypocretin system is rapidly emerging in both animals and humans. Hypocretin abnormalities cause narcolepsy in dogs, human and mice. The role of the hypocretin system in normal sleep regulation is more uncertain. We believe hypocretin cells drive cholinergic and monoaminergic activity across the sleep cycle. Input from the suprachiasmatic nucleus to hypocretin-containing neurons may explain the occurrence of clock-dependent alertness. Other functions are suggested by pharmacological and neurochemical experiments. These include regulation of food intake, neuroendocrine function, autonomic nervous system activity and energy balance.  相似文献   

20.
Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins are also involved in the neurobiological mechanisms underlying relapse to drug-seeking behavior induced by drug-related environmental stimuli and stress, as mainly described in the case of psychostimulants. Based on these preclinical studies, the use of selective ligands targeting hypocretin receptors could represent a new therapeutical strategy for the treatment of substance abuse disorders. In this review, we discuss and update the current knowledge about the participation of the hypocretin system in drug addiction and the possible neurobiological mechanisms involved in these processes regulated by hypocretin transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号