首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
脂肪的过度积累严重危害人类健康。前体脂肪细胞分化是脂肪发育的关键过程,研究前体脂肪细胞分化相关基因的表达有助于认识脂肪沉积的机理。尽管家兔是一种理想的研究脂肪发育的动物模型,但是针对其前体脂肪细胞分化不同时期基因表达谱的研究鲜见报道。本研究通过诱导家兔前体脂肪细胞分化,在分化第0 d、3 d和9 d收集脂肪细胞,利用转录组测序(RNA-seq),在分化第3 d样本与第0 d样本的比较中筛选出1352个差异表达基因(differentially expressed genes, DEGs),在分化第9 d样本与第3 d样本的比较中筛选出888个DEGs。GO (gene ontology)功能富集和KEGG (kyoto encyclopedia of genes and genomes)通路分析发现,0~3 d分化期上调的DEGs显著富集在PPAR信号通路和PI3K-Akt信号通路上,3~9d分化期上调的DEGs显著富集到与细胞周期调控有关的GO条目和KEGG信号通路,0~3d和3~9d阶段特异上调的DEGs可能分别作用于细胞质和细胞核。通过DEGs的蛋白-蛋白互作(protein-protein interaction, PPI)网络分析发现,筛选出的核心节点(hub node)基因可能通过调控细胞周期而影响家兔前体脂肪细胞分化。  相似文献   

2.
为了探究脂肪酸对罗非鱼(Oreochromis niloticus)脂肪细胞增殖和分化的影响, 在体外培养罗非鱼前脂肪细胞, 并在其增殖和分化过程中分别添加100 μmol/L的棕榈酸(Palmitic Acid, PA)、油酸(Oleic Acid, OA), 亚油酸(Linoleic Acid, LA)和α-亚麻酸(α-Linolenic Acid, LNA)进行处理。使用SRB (Sulforhodamine B)染色法和油红O染色法检测外源性脂肪酸对脂肪细胞增殖和分化的影响, Real-time qPCR检测增殖分化过程中基因表达情况。结果显示, 在培养8d时, 外源添加的不饱和脂肪酸可以促进罗非鱼前脂肪细胞增殖, 并且增殖过程中增殖相关基因(c-fos和c-myc)、脂解相关基因(ATGL)和脂合成相关基因(PPARγ和CD36)的表达与对照组相比均显著提高(P<0.05)。此外, 外源脂肪酸的加入可以抑制脂肪细胞的分化。棕榈酸的加入使得脂肪细胞中产生的脂滴面积较少, 数量较多; 分化过程中细胞的β氧化相关基因(CPT-1a)与对照组相比显著上调, 而脂解相关基因(ATGL)则显著下调。外源性不饱和脂肪酸可以促进罗非鱼前脂肪增殖, 而饱和脂肪酸主要抑制细胞分化。在增殖过程中, 过量的脂肪酸先通过脂合成储存在胞内, 再借助脂解等途径进行代谢, 从而帮助细胞适应环境中高浓度的脂肪酸。而在分化过程中, 添加外源脂肪酸, 可能通过抑制脂肪细胞内的脂合成和脂解的发生, 同时促进β氧化等方式来抑制脂肪细胞分化。  相似文献   

3.
4.
Bovine perimuscular fat (PMF) preadipocytes were induced to undergo adipogenesis in vitro in our recent study to define the expression patterns of genes involved in the differentiation process. Based on the understanding of the interaction among adipogenic genes, a broad overview of gene expression profile in the differentiating PMF preadipocytes was evaluated using bovine specific DNA microarray from day 2 to 8 post-differentiation induction. A total of 100 significantly differentially expressed genes were detected between differentiated and control cells including those involved in several biochemical pathways and cellular/molecular signaling. In addition, quantitative real-time PCR validated that typical adipogenic genes were up-regulated at early differentiation in the preadipocytes. These results suggest that the PMF preadipocyte system is available as a novel in vitro model for molecular adipogenesis studies in the bovine and that a series of genes are switched on/off during early events associated with adipogenesis.  相似文献   

5.
During adipocyte differentiation, there is an underlying complex series of gene expressions. We have previously isolated many genes whose expression levels are quickly elevated by the addition of inducers to mouse 3T3-L1 preadipocyte cells. Here we report the isolation and characterization of SLC39A14, a member of the LZT proteins, one of the subfamilies of ZIP transporters. The expression of the SLC39A14 gene was strongly and rapidly induced at the early stages of differentiation. Moreover, it was highly restricted to the potential differentiation state of 3T3-L1 cells and the expression level was quite low in the nonadipogenic NIH-3T3 cells, indicating a dominant expression in adipocyte differentiation. The zinc uptake assay revealed that SLC39A14 functions as a zinc transporter. Taken together, these results suggest that SLC39A14 plays a role as a zinc transporter during the early stages of adipogenesis.  相似文献   

6.
7.
Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3′ untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.  相似文献   

8.
Several metabolic abnormalities are associated with relative excess or deficiency of adipose tissue. Identifying the regulators of adipogenic differentiation is critical for its successful manipulation. Ad36, a human adenovirus, is a novel factor that promotes adipogenesis. We exploited the adipogenic potential of Ad36 to reveal exogenous modifiers of adipogenesis in rodent preadipocyte cell line in the presence or absence of differentiation inducers methyl‐isobutyl‐xanthine, dexamethasone, and insulin (M, D, and I; MDI). A nonadipogenic human adenovirus Ad2 was used as a negative control for viral infection. First, we confirmed that, Ad36, but not Ad2, increases lipid accumulation in the presence or absence of MDI. Time‐course studies for expression of key genes of adipogenic cascade showed that it is Ad36, but not Ad2, which downregulated preadipocyte marker gene Wnt10b, and upregulated expression of early (C/EBPΔ and C/EBPβ), intermediate (PPARγ2), and late genes (aP2 and G3PDH) of adipogenic cascade even in the absence of MDI. In the presence of MDI, onset of expression of adipogenic genes coincided for Ad36 and control groups, but the expressions were significantly greater for the Ad36 group. Next, we observed that attenuation of Ad36 mRNA expression by an antiadenoviral agent reduced 3T3‐L1 differentiation, indicating that viral mRNA expression is required for the process. Furthermore, with or without MDI or its components, Ad36 significantly increased lipid accumulation in 3T3‐L1 cells. Cell confluency at the time of Ad36 infection positively influenced lipid accumulation. The results reveal that Ad36 is an MDI‐independent exogenous regulator of the adipogenic process. Elucidating the molecular pathways involved may reveal novel regulatory controls of adipogenesis.  相似文献   

9.
10.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   

11.
We previously reported that partial disruption of the Ankrd26 gene in mice leads to hyperphagia and leptin-resistant obesity. To determine whether the Ankrd26 mutation can affect the development of adipocytes, we studied mouse embryo fibroblasts (MEFs) from the mutant mice. We found that Ankrd26(-/-) MEFs have a higher rate of spontaneous adipogenesis than normal MEFs and that adipocyte formation is greatly increased when the cells are induced with troglitazone alone or with a mixture of troglitazone, insulin, dexamethasone, and methylisobutylxanthine. Increased adipogenesis was detected as an increase in lipid droplet formation and in the expression of several markers of adipogenesis. There was an increase in expression of early stage adipogenesis genes such as Krox20, KLF5, C/EBPβ, C/EBPδ, and late stage adipogenesis regulators KLF15, C/EBPα, PPARγ, and aP2. There was also an increase in adipocyte stem cell markers CD34 and Sca-1 and preadipocyte markers Gata2 and Pref-1, indicating an increase in both stem cells and progenitor cells in the mutant MEFs. Furthermore, ERK was found constitutively activated in Anrd26(-/-) MEFs, and the addition of MEK inhibitors to mutant cells blocked ERK activation, decreased adipogenesis induction, and significantly reduced expression of C/EBPδ, KLF15, PPARγ2, CD34, and Pref-1 genes. We conclude that Ankrd26 gene disruption promotes adipocyte differentiation at both the progenitor commitment and differentiation steps and that ERK activation plays a role in this process.  相似文献   

12.
13.
Burton GR  Guan Y  Nagarajan R  McGehee RE 《Gene》2002,293(1-2):21-31
The molecular mechanisms that regulate cellular differentiation during development and throughout life are complex. It is now recognized that precise patterns of differentially expressed genes ultimately direct a particular cell toward a given lineage and many of these are regulated during the earliest stages of differentiation. Using a microarray-based expression analysis, we have examined gene expression profiles during the first 24 h of 3T3-L1 adipocyte differentiation. RNA was isolated at times 0, 2, 8, 16, and 24 h following stimulation of differentiation and hybridized in duplicate to high density Affymetrix microarray gene chips containing a series of 13,179 cDNA/expressed sequence tag (EST) probe sets. Two hundred and eighty-five cDNA/ESTs were shown to have at least a fivefold change in expression levels during this time course and both hierarchical and self-organizing map clustering analysis was performed to categorize them by expression profiles. Several genes known to be regulated during this time period were confirmed and Western blot analysis of the proteins encoded by some of the identified genes revealed expression profiles similar to their mRNA counterparts. As expected, many of the genes identified have not been examined in such a critical time period during adipogenesis and may well represent novel adipogenic mediators.  相似文献   

14.
Previous studies demonstrate that the delta-like (dlk) and preadipocyte factor 1 (Pref-1) genes encode similar proteins. Pref-1 is downregulated during adipocyte differentiation, and expression of ectopic Pref-1 inhibits adipogenesis. We explored whether dlk functions similarly to Pref-1 and studied the role of alternately spliced dlk variants encoding membrane-associated or -secreted forms. We also studied whether enforced downregulation of dlk/Pref-1 may enhance the differentiation response of non-committed cells. Ectopic expression of a potentially secreted dlk variant, conditioned media from dlk expressing cells or several individual epidermal-growth-factor-dlk peptides inhibited 3T3-L1 differentiation. This demonstrates that dlk and Pref-1 are functionally equivalent. dlk gene mRNA encoding for secreted variants decreased much faster than total dlk gene mRNA during differentiation of 3T3-L1 cells. In fact, total dlk or membrane-associated dlk protein expression increased during the first hours of differentiation. Cells sorted for lowest levels of dlk protein diminished or lost their ability to differentiate. These data suggest that membrane and secreted dlk protein variants play opposite roles in the control of adipogenesis. In addition, enforced downregulation of dlk protein expression in the weakly adipogenic Balb/c 3T3 cell line dramatically enhanced adipogenesis in response to insulin. These results indicate that dlk protein not only participates in processes leading to inhibition of adipogenesis but that the control of its expression and different spliced variants is essential for the adipogenic response to extracellular signals.  相似文献   

15.
16.
Preadipocytes are present in adipose tissues throughout adult life that can proliferate and differentiate into mature adipocytes in response to environmental cues. Abnormal increase in adipocyte number or size leads to fat tissue expansion. However, it is now recognized that adipocyte hypertrophy is a greater risk factor for metabolic syndrome whereas fat tissue that continues to produce newer and smaller fat cells through preadipocyte differentiation is "metabolically healthy". Because adipocyte hypertrophy is often associated with increased oxidant stress and low grade inflammation, both are linked to disturbed cellular redox, we tested how preadipocyte differentiation may be regulated by beta-mercaptoethanol (BME), a pharmacological redox regulator and radical scavenger, using murine 3T3-F442A preadipocytes as the cell model. Effects of BME on adipogenesis were measured by microphotography, real-time PCR, and Western analysis. Our data demonstrated that preadipocyte differentiation could be regulated by extracellular BME. At an optimal concentration, BME enhanced expression of adipogenic gene markers and lipid accumulation. This effect was associated with BME-mediated down-regulation of inflammatory cytokine expression during early differentiation. BME also attenuated TNFalpha-induced activation of NFkappaB in differentiating preadipocytes and partially restored TNFalpha-mediated suppression on adipogenesis. Using a non-adipogenic HEK293 cell line transfected with luciferase reporter genes, we demonstrated that BME reduced basal and TNFalpha-induced NFkappaB activity and increased basal and ciglitazone-induced PPARgamma activity; both may contribute to the pro-adipogenic effect of BME in differentiating F442A preadipocytes.  相似文献   

17.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

18.
MicroRNAs (miRNAs) have critical roles during adipogenesis; however, their precise functions are not completely understood. Porcine miRNA expression profiles show that miR-127 is dramatically downregulated with age in adipose tissue. We aimed to identify the precise functions and mechanisms of miR-127 in proliferation and adipogenesis. Preadipocytes were cultured under conditions to induce proliferation or differentiation and the effect of miR-127 overexpression on these processes, and the associated bioinformatically predicted target genes, were assessed using luciferase assays, quantitative real-time PCR, western blot analysis, and cell staining techniques. miR-127 increased proliferation by promoting cell cycling, whereas it suppressed differentiation, which was accompanied by reduced lipid accumulation. miR-127 targeted mitogen-activated protein kinase 4 and homeobox C6 (HOXC6) to activate preadipocyte proliferation. During differentiation, miR-127 targeted HOXC6 to attenuate adipogenesis. These findings identify miR-127 as an inhibitor of porcine adipogenesis, which may inform future strategies to reduce porcine fat deposition and treat human obesity.  相似文献   

19.
The events at the earliest stage of adipocyte differentiation are yet to be fully elucidated. Previously, we cloned the genes that are induced at the beginning of the differentiation of mouse 3T3-L1 preadipocyte cells. We found that the gene expression of regulators of G protein signaling-2 (RGS2) rapidly increased after the addition of inducers and decreased at 3-12 h. The expression pattern of RGS2 mRNAs differed among growth-arrested and proliferating 3T3-L1 cells and NIH-3T3 cells, indicating a specificity for adipogenesis. Here we report that the ectopic expression of RGS2 using a retroviral system in mouse NIH-3T3 cells promotes adipogenesis only in the presence of BRL49653, which is a ligand for the peroxisome proliferator-activated receptor gamma (PPARgamma). These results strongly suggest that RGS2 play a crucial role in the program of adipocyte differentiation and may contribute to the function of PPARgamma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号